
Machine learning for
automatic segmentation of

neonatal and fetal MR brain
images

Machine learning for
automatic segmentation of

neonatal and fetal MR brain
images

Nadieh Khalili



Machine learning for automatic
segmentation of neonatal and fetal MR

brain images

Nadieh Khalili



ISBN: 978-90-393-7324-8

Copyright © N. Khalili 2020. All rights reserved.

No part of this publication may be reproduced or transmitted in any form by any means with-
out prior permission from the copyright owner. The copyright of the articles that have been
published has been transferred to the respective journals.

Cover design by Nadieh Khalili. Printed by GildePrint.



Machine learning for automatic segmentation of
neonatal and fetal MR brain images

Machine learning voor automatische segmentatie van
neonatale en foetale MR-hersenbeelden

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. H. R. B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op dinsdag 22 september 2020 des middags te 12.45 uur

door

Nadieh Khalili
geboren op 12 juli 1989

te Teheran, Iran



Promotoren: Prof. dr. ir. I. Išgum
Prof. dr. ir. M. A. Viergever
Prof. dr. M. J. N. L. Benders





Contents

CHAPTER 1

Introduction 9

CHAPTER 2

Automatic extraction of ICV in fetal and neonatal MRI 15

CHAPTER 3

Automatic brain tissue segmentation in fetal MRI 43

CHAPTER 4

GAN-based segmentation of motion affected neonatal brain MRI 67

CHAPTER 5

Brain and CSF volumes in fetuses and neonates with CHD 77

CHAPTER 6

Assessment of brain injury and brain volumes after PHVD 91

CHAPTER 7

Brain tissue segmentation in MR images of infants with stroke 107

CHAPTER 8

Summary and discussion 133

Nederlandse samenvatting 139

Bibliography 142

Acknowledgments 157

Publications 159

Biography 161





Chapter 1
Introduction
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1.1 Brain development in infants
Important neurodevelopmental changes occur in the last trimester of pregnancy, i.e.,
between 30 and 40 weeks of gestation [1–3]. During this rapid brain development
period, fetuses and preterm born infants are at higher risk of developing neurodevel-
opmental problems later in life. Monitoring brain status assists clinicians in detecting
impairments and in intervening if needed. Magnetic Resonance Imaging (MRI) is in-
creasingly used to monitor the infant brain both in utero and ex utero, so as to detect
injuries that may have a long-term effect on neurocognitive and motor development
[4, 5]. However, visual evaluation of images does not always quantify the severity
of the injury sufficiently and it is, therefore, not optimal to predict long-term effects.
Quantifying brain development, using e.g. volumetric growth and morphology mea-
surements, may aid in establishing injuries more reliably and can be correlated more
accurately to cognitive outcome measures [6–8]. To quantify brain development and
pathology with MRI, segmentation of fetal and neonatal brain tissues is a prerequisite.

1.2 Fetal MRI Segmentation
Fetal MRI is widely used to investigate brain development in utero. MR images do
not only visualize brain tissue classes and identify abnormalities but are also able to
quantify brain development using volumetricmeasurements and cortical folding. Such
analysis allows us to investigate brain development in case of antenatal abnormalities
and to compare this quantitatively with the development of healthy infants. Fetal MRI
visualizes fetal brain, maternal body and infant’s body (see Figure 1.2). A prerequisite
for quantification is the segmentation of the fetal brain into different tissue classes,
such as cortex, white matter and gray matter. Performing this segmentation manually
is extremely time-consuming and requires a high level of expertise, not only because
of the complex convoluted shapes of the different tissues but also owing to the low
image resolution and to fetus motion (see Figure 1.1). Moreover, MR intensity values
in tissues are not fully homogeneous in some slices and tissue contrasts are difficult
to discern. Consequently, automatic brain tissue segmentation is challenging.

1.3 Neonatal MRI Segmentation
NeonatalMRI analysis is of great clinical interest to quantitativelymeasure brain devel-
opment and to thereby aid in diagnosis and treatment decisions. Besides anomaly and
defects in newborns, premature birth is the most frequent complication in neonates
with an incident of 1 per 8.6 [9]. Premature infants develop the brain ex utero which
may lead to brain injury or secondary developmental issues [10, 11]. Obtaining image
segmentations manually in a large-scale study is both subjective and time-consuming.
Moreover, neonatal MRI frequently suffers from artifacts caused by the infant’s mo-
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Figure 1.1: Examples of fetal and neonatal MRI with artifacts. The top row shows slices from
fetal MRI where intensity inhomogeneity artifacts are visible, especially in the CSF. The bottom row
shows slices from neonatal MRI acquired at 30 weeks of PMA with visible motion artifacts caused
by the movement of the infant during scanning.

tion that occurs during scanning; examples are shown in Figure 1. A further challenge
in neonatal MRI segmentation is anatomical variation due to differences in brain mor-
phology between 30 and 40 weeks postmenstrual age (PMA) or critical abnormalities
that alter brain shape significantly. All these causes of large variations and abnormal-
ities in neonatal brain MR images call for automatic segmentation methods.

1.4 Machine learning
Recently, machine learning methods and particularly deep learning achieved excel-
lent segmentation performance in neonatal brain segmentation [12–14]. The major
strength of deep learning techniques is their ability to extract features relevant to the
task directly from the data. Consequently, there is no need to derive a set of hand-
crafted features from the image for classification or regression tasks. Instead, a con-
volutional neural network (CNN) connects the input and output through a number
of convolution layers. These convolution layers consist of trainable convolution ker-
nels with weights and biases which are optimized during the training using a loss
function and stochastic gradient descent. CNN is the most popular neural network in
image processing, classification, and segmentation tasks. Another type of neural net-



12 Chapter 1

Figure 1.2: Examples of fetal MRI in sagittal (left), axial (middle) and coronal (right) plane. The fetal
MRI visualizes fetal brain, maternal body and infant’s body.

work recently widely used in image generation is the generative adversarial network
(GAN). GAN composed of two networks, a generator, and a discriminator. These two
networks are trained against each other, the generator network trains to fool the dis-
criminator, and the discriminator train to discriminates better between real and fake
data made by generator. Therefore, in image generation, the network generates more
realistic images.

The objective of this thesis is to develop CNN-based automatic methods to segment
neonatal and fetal MR brain images.

1.5 Outline of the thesis

This thesis presents machine learning methods for the segmentation of neonatal and
fetal MRI. These methods are applied to images of premature infants and infants with
abnormalities to quantify brain development:

CHAPTER 2 describes an automatic method to segment intracranial volume (ICV) in
neonatal and fetal MRI. ICV segmentation is a step prior to further brain analysis. The
method uses a convolutional neural network to segment ICV from a wide variety of
data including images visualizing pathology neonatal MRI and scans from different
centers and vendors.

CHAPTER 3 presents an automatic method to segment fetal MRI into seven tissue classes
using a fully convolutional neural network. In addition, a data augmentation tech-
nique that improves segmentation in scans with intensity inhomogeneity artifacts was
proposed. The method is validated on neonatal MRI with the same type of image arti-
facts and demonstrates that the proposed method generalizes to these images.
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CHAPTER 4 describes a method to segment brain tissue classes in scans with motion ar-
tifacts. The proposed method employs a generative adversarial network to transform
slices affected by motion artifacts into slices without artifacts, and vice versa. The
method was evaluated quantitatively and qualitatively.

CHAPTER 5 describes a study on brain volume quantification from the third trimester of
pregnancy through neonatal life in patients with congenital heart disease (CHD). To
quantify fetal and neonatal MRI brain tissue volumes, themethod described in Chapter
2 and 3 was applied.

CHAPTER 6 describes a study on the effects of the early and late intervention of infants
with posthemorrhagic ventricular dilatation (PHVD) of the ventricular volume and
any additional brain injury using term-equivalent age MRI. To quantify brain tissue
volume in neonatal MRI, the method described in Chapter 3 was applied.

CHAPTER 7 presents methods for brain tissue segmentation in infants with perinatal
stroke who are scanned after birth and at the age of three months. The method relies
on fully convolutional neural networks to segment brain and ischemic stroke from
scans acquired after the acute phase following the stroke. The method was evaluated
quantitatively and qualitatively in a larger set.

Finally in CHAPTER 8 the finding of previous chapters are summarized and the results,
as well as future directions, are discussed.





Chapter 2
Automatic extraction of ICV in fetal andneona-
tal MRI

BASED ON: N. Khalili, E. Turk, M. Benders, P. Moeskops, N. Claessens, R. de Heus, A. Franx, N.
Wagenaar, J. Breur, M. Viergever, and I. Išgum. “Automatic extraction of the intracranial volume
in fetal and neonatal MR scans using convolutional neural networks”, NeuroImage: Clinical, vol.
24 (2019), p. 102061.
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Abstract
MR images of infants and fetuses allow non-invasive analysis of the brain. Quantita-
tive analysis of brain development requires automatic brain tissue segmentation that
is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in
the size and morphology of the developing brain, motion artifacts, and large variation
in the field of view make ICV segmentation a challenging task.

We propose an automatic method for segmentation of the ICV in fetal and neonatal
MRI scans. The method was developed and tested with a diverse set of scans regard-
ing image acquisition parameters (i.e. field strength, image acquisition plane, image
resolution), infant age (23-45 weeks post menstrual age), and pathology (posthaem-
orrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results
demonstrate that the method achieves accurate segmentation with a Dice coefficient
(DC) ranging from 0.98-0.99 in neonatal and fetal scansregardless of image acquisition
parameters or patient characteristics. Hence, the algorithm provides a generic tool
for segmentation of the ICV that may be used as a preprocessing step for brain tissue
segmentation in fetal and neonatal brain MR scans.
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2.1 Introduction

Magnetic resonance imaging (MRI) is a clinically used non-invasive tool for monitor-
ing brain development in fetuses and neonates. The analysis usually comprises of
quantification of brain tissue volumes and cortical morphology to extract meaningful
information for diagnosis or prognosis [15–21]. Automatic quantification of these in-
dices requires segmentation of brain tissue classes. To allow dedicated analysis within
the brain, automatic methods typically perform extraction of the intracranial volume
(ICV) prior to further analysis [12, 22].

A number of methods for segmentation of ICV in adult MR scans have been applied
to analysis of T1- and T2-weighted neonatal MR images [23–26]. Brain Extraction Tool
(BET) [23] is a publicly available tool used as a preprocessing step by many automatic
brain segmentation methods [22]. BET iteratively deforms a sphere to fit it on the
brain surface using a geometric algorithm. Robust Brain Extraction tool (ROBEX) is
another commonly used and publicly available tool for segmentation of the ICV in
adult MR images [24]. ROBEX first employs a Random Forest classifier to detect the
brain boundary and thereafter uses a point distribution model that ensures a plausible
result. Furthermore, Brain Extraction based on non-local Segmentation Technique
(BEaST) is a publicly available tool for ICV segmentation [25]. BEaST is a patch-based
segmentation method exploiting the similarity between the patches in the region of
interest and predefined patches in a library.

Because of the lack of publicly available tools developed for ICV segmentation of
neonatal brain MRI, these methods designed to analyze brain MR scans of adults are
frequently used to segment the ICV in neonatal scans. Consequently, they generally
do not produce highly accurate results when applied to neonatal brain MR scans [27].
Moreover, these methods typically fail when applied to fetal MR scans. Hence, several
methods specifically designed to extract the ICV in MR scans of neonates have been
proposed. Yamaguchi et al. [27, 28] proposed a method for segmentation of the ICV in
brain MRI of neonates and children aged between 36 weeks post menstrual age (PMA)
and 4 years. The method uses fuzzy logic and it is applicable to images without severe
pathology acquired sagittally. In the first step the intensity distributions of white mat-
ter (WM), gray matter (GM), cerebrospinal fluid (CSF), fat, and other tissues visible
in the scan are estimated using Bayesian classification and a Gaussian mixture model.
Segmentation of brain tissue classes is thereafter performed by means of a fuzzy active
surface model using distributions of WM, GM and CSF from the previous step. The
qualitative evaluation of this method demonstrated improved performance over BET.
Later, Mahapatra et al. [29] proposed a shape model with graph cuts for segmentation
of the ICV in neonatal MRI. The shape model is generated by averaging manually la-
beled images which is afterwards used with graph cut for segmentation. This method
was applied to term-born infants imaged at about three weeks of age. Serag et al.
[28] proposed an atlas-based segmentation of the ICV. To eliminate the need for rep-
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resentative training data i.e. data coming from the same distribution, atlases that are
uniformly distributed were selected. The algorithm was applied to T1-weighted and
T2-weighted MR scans without visible pathology of preterm infants scanned at term
equivalent age. The method showed high segmentation accuracy and it outperformed
publicly available tools such as BET and ROBEX.

Similar to methods dedicated to segmentation of the ICV in neonatal MR scans,
a number of studies proposed segmentation of the ICV in fetal MRI. Anquez et al.
[30] proposed a method that first localizes the eyes and exploits this information to
segment the ICV using a graph cut approach guided by shape, contrast, and biometrical
priors. The method was applied to scans with unknown fetal orientation and the
results demonstrated high segmentation accuracy.

In recent years, convolutional neural networks (CNNs) have become the most pop-
ular method for automatic image segmentation in medical images [31]. Several stud-
ies investigated different CNN architectures for brain tissue segmentation [32–36] and
brain extraction [37–39] in adult MRI. Wachinger et al. [40] proposed a network that
combines brain extraction and brain tissue segmentation.

A few studies used CNNs to segment ICV from fetal or neonatal MRI. Rajchl et
al. [41] proposed a weakly supervised deep learning approach for ICV segmentation
in fetal MRI that combines a convolutional neural network and iterative graph opti-
mization. The network was trained with bounding boxes around the brain as weak
labels. The method was applied to fetal MR scans and achieved high segmentation
accuracy. In another study, Rajchl et al. [42] investigated the use of crowd sourc-
ing platform for ICV segmentation of fetal MRI using convolutional neural network.
Salehi et al. [43] proposed an iterative deep learning segmentation method that uses
U-net-like convolutional neural network (Auto-net). In this approach, the fetal brain
is segmented from a localized bounding box which was defined manually using ITK-
SNAP [44]. In a subsequent study, Salehi et al. [45] evaluated Auto-net on fetal MRI
without any preprocessing steps such as defining a bounding box. The method was
trained on a very large number of manually annotated fetal MRI and demonstrated
accurate segmentation results in fetal scans. Recently, Khalili et al. [46] proposed
multi-scale convolutional neural network for ICV segmentation of fetal MRI.

Unlike methods performing ICV segmentation directly, several methods perform
brain localization as a step prior to fetal ICV segmentation [47–50]. Recently, Tour-
bier et al. [51] proposed a pipeline that sequentially performs ICV localization, ICV
segmentation and super-resolution reconstruction in fetal MR scans. In this method
a template-matching approach, with age as prior knowledge, is used to segment the
ICV in fetal MRI. A limitation of template based techniques is that they are typically
computationally more expensive than machine learning algorithms. In addition, they
have a high chance of failure if representative age-matched templates are not avail-
able. Moreover, to segment brain tissue classes, methods employing brain localization
require subsequent segmentation of the ICV.
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All aforementioned methods were evaluated either on neonatal or fetal MR scans,
without visible pathology. To the best of our knowledge, thus far no study proposed
a generic method that performs segmentation of the ICV in neonatal and fetal MRI. In
this study, we propose a method for automatic segmentation of the ICV in neonatal
and fetal T2-weighted MR scans that is robust to imaging parameters (field strength,
image acquisition plane, image resolution), and pathology and patient characteristics
(posthaemorrhagic ventricular dilatation (PHVD), stroke, asphyxia, Down syndrome).
The method employs a convolutional neural network with a U-net architecture [52].
The network was trained with a combination of fetal and preterm born neonatal scans
acquired in axial, coronal and sagittal orientation. The age of patients at the time of
scanning in the training set ranged from 23 to 35 weeks PMA. The method was evalu-
ated using images of fetuses and infants between 23 weeks PMA and 3 months of age
at the time of scanning, ranging from absence of visible pathology to presence of se-
vere pathology such as stroke or PHVD. This work builds upon our preliminary study
that described segmentation of the ICV in fetal MRI using a multi-scale convolutional
neural network [46].

Figure 2.1: Examples of preterm neonatal and fetal MR scans included in the study. Top: coronal
MRI acquired at 30 weeks PMA (left), coronal MRI acquired at 40 weeks PMA (middle), axial MRI
acquired at 40 weeks PMA (right). Bottom: fetal MRI acquired in coronal (left), sagittal (middle) and
axial (right) directions.
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2.2 Data

In this study a diverse set of fetal and neonatal T2-weighted MR scans was used. Fetal
scans were acquired in axial, sagittal and coronal image planes and did not contain
visible pathology. Neonatal images include scans of preterm and term-born infants.
The scans were acquired in axial or coronal image planes, and include images without
and with pathology. Examples of fetal and neonatal images included in the study are
illustrated in Figure 2.1. As shown in the figure, fetal MRIs have a larger field of view
that visualizes the entire fetus as well as parts of the maternal body. Moreover, we
include scans which were acquired with different scanner-vendors (Philips, Siemens)
and field strength (1,5T and 3T). The neuroimaging data were obtained as part of the
clinical protocol, written informed consent for use of the clinically acquired data and
approval of the experiments and methodology was waived by the institutional review
board of the University Medical Center Utrecht, The Netherlands.

2.2.1 Fetal MRI

Two sets of fetal MR scans were used. The first set (Set 1) includes T2-weighted MR
scans of fetuses (age: 23-35 weeks PMA). Images were acquired on a Philips Achieva
3T scanner at the University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
using a turbo fast spin-echo sequence. The dataset contains 45 scans in total: 17 scans
acquired in axial direction, 15 scans in coronal direction and 13 scans in sagittal di-
rection. The images were acquired with voxel sizes of 1.25 × 1.25 × 2.5 mm3 and re-
constructed to 0.7 × 0.7 × 1.25 mm3 with reconstruction matrix of 512 × 512 × 80. The
scans were reconstructed by the scanners algorithm and no further reconstruction (e.g.
super-resolution processing) of the acquired images was performed. Furthermore, the
proposed approach was applied to the 2D MRI slices without any prepossessing steps
such as intensity inhomogeneity or motion correction.

The second set (Set 2) contains publicly available T2-weighted MR scans of 17
fetuses (age range: 29 ± 5 weeks PMA) which present a subset of scans described by
Salehi et al. [45]. Scans were acquired on a 3T Siemens Skyra scanner at Boston
Childeren’s Hospital, Boston, US in axial, sagittal and coronal direction. The scans
were acquired with voxel sizes of 1×1×2mm3 with a reconstructionmatrix of 256×256;
the number of slices varied from 48 to 54.

The third set (Set 3) includes fetal T2-weighted MR scans acquired on Philips
Achieva 1.5T scanner at the UMC Utrecht, Utrecht, the Netherlands. The dataset con-
tains 18 scans: 6 scans were acquired in axial direction, 6 in coronal and 6 in sagittal
direction. The scans were reconstructed to a voxel size of 1.18 × 1.18 × 1.25 mm3 and
reconstruction matrix of 288 × 288 × 80.
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2.2.2 Neonatal MRI

All neonatal scans were acquired on a Philips Achieva 3T scanner at the University
Medical Center Utrecht, Utrecht, the Netherlands. We divided the data according to
age of the infants at the time of acquisition, image acquisition plane, and presence and
type of visible pathology. As shown in Figure 2.1, there are variations in the neonatal
scans, especially between 30 and 40 weeks PMA, when the brains exhibit important
structural development, including cortical folding, and changes in shape and volume.

PRETERM BORN INFANTS WITHOUT VISIBLE PATHOLOGY This set consists of three dif-
ferent subsets. The first one - 30-weeks coronal MRI - comprises 20 scans of preterm
born infants imaged at 30 weeks PMA. The second set - 40-weeks coronal MRI - con-
tains 17 scans of preterm born infants imaged at term equivalent age. The third set -
40-weeks axial MRI - contains 15 scans of preterm born infants imaged at term equiva-
lent age. This set includes all 22 scans from the NeoBrainS12 challenge. Detailed data
description is provided in a former study [22].

CROSS-SECTIONAL COHORT A set of 10 T2-weighted MRI scans were taken from a
study investigating neonatal brain development that were made shortly after birth
(29-43 weeks PMA) [53]. The scans were selected to include images of 10 neonates
covering the complete available infant age range. Hence, this set includes preterm
and full-term born infants.

INFANTS WITH CONGENITAL HEART DISEASE (CHD) The set consists of 10 T2-weighted
MRI scans of 10 patients with critical congenital heart disease (CHD). These infants
were scanned before and after univentricular or biventricular cardiac repair using car-
diopulmonary bypass within the first 30 days of life [54]. We selected 5 scans made
before and 5 scans after surgery, of different patients. The images visualized WM le-
sions indicating mild to moderate brain injuries. However, the brain morphology was
not significantly altered.

INFANTS WITH PHVD A set of 10 T2-weigted MRI scans of 10 infants with germinal
matrix-intraventricular hemorrhage (GMH-IVH) and subsequent PHVD requiring in-
tervention were selected randomly from a clinical study on PHVD infants [55]. The
infants included in this study received a ventricular shunt that is next to the substan-
tial ventricular dilatation visible in MR images. An example of this is illustrated in
Figure 2.2. Note that the the ventricles are substantially enlarged typically resulting
in a deformed brain shape. Moreover, these patients often have a temporary ventricu-
lar shunt which is visible in a number of scan slices.
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INFANTS WITH STROKE This set consists of 10 T2-weighted MRI scans of 10 infants
with arterial ischemic stroke [56]. These neonates were treatedwith 1000 IU/kg rhEPO
immediately after diagnosis. A secondary MRI was performed when the patients were
3 months of age. We included 5 primary and 5 secondary scans showing WM degra-
dation. Primary and secondary scans were not showing the same patients. Figure 2.2
illustrates an example of a secondary scan when the stroke-affected area is filled with
CSF.

INFANTS WITH ASPHYXIA This set consists of 9 T2-weighted MRI scans of 9 patients
with perinatal asphyxia [57]. These scans present diffuse hypoxic-ischemic injury
demonstrated as hypointensities in the images that can be present throughout the
brain tissue.

INFANTS WITH DOWN SYNDROME (DS) This set consist of 10 T2-weighted MRI scans
imaging 10 infants with Down syndrome. In these patients, the brain volume is smaller
because of delayed brain growth and gyrification compared with healthy infants [58].
Figure 2.2 illustrates a typical example of a Down syndrome infant demonstrating
abnormal shape of the head, the brain and delayed gyrifcation.

Figure 2.2: Examples of T2-weighted MR scans of preterm born neonates with ischemic stroke
(left), Down syndrome (middle), and PHVD (right).

INFANT SCANSWITHARTIFACTS This set consist of 10 T2-weightedMRI scans acquired
in coronal orientation from preterm born infants imaged at term equivalent age (40
weeks of post menstrual age). 5 scans contain intensity inhomogeneity artifacts and 5
scans show motion artifacts.

Details on image acquisition parameters for all sets are listed in Table 2.1.
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2.2.3 Reference standard

To establish the reference standard, manual segmentation of the ICV was performed
by a trained medical student. Manual annotation was accomplished using in-house
developed software by painting ICV voxels in each image slice. ICV included brain,
cerebellum and extracranial cerebrospinal fluid. Skull and skin were excluded from
the segmentation. We followed the definition of the eight tissue types provided by the
NeoBrainS12 challenge for ending point of the brain stem [22]. Note that the reference
standard for Set 3 of fetal MRI and infants scans with artifacts was not available, hence
the segmentation performance on these two sets was evaluated visually.

To estimate inter-observer variability, three slices of 7 scans were segmented by
different observers. Two scans from 30 weeks coronal MRI, three scans from 40 weeks
coronal MRI and two scans from 40 weeks axial MRI were selected. Furthermore, the
slice representing the middle of the brain and subsequently, the first and last slice on
which each tissue was visible were identified.

Figure 2.3: Network architecture: The network consists of a contracting path and an expanding
path. The contracting path consists of repeated convolution layers followed by max pooling, and
the expansion path consists of convolution layers followed by up-sampling.

2.3 Method

Our aim is to train a single network that is able to perform segmentation of the ICV
in a diverse set of scans where the diversity comprises differences in field of view, age
of the scanned subjects, orientation of image acquisition, image resolution and pres-
ence of pathology. Our method employs a fully convolutional network (FCN) with
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U-net like architecture [52] since such networks have demonstrated accurate segmen-
tation performance in a number of different segmentation tasks [31]. We have used
a smaller version of U-net to avoid over-fitting. The network has a contracting path
and an expanding path. The contracting path consists of repeated 3 × 3 zero padded
convolutions where each convolution is followed by a rectified linear unit (ReLU). 2×2
max pooling layers with stride 2 downsample the feature maps. The number of the
feature maps doubles after every two convolutional layers. In the expanding path, up-
sampling with stride 2 is followed by a 2 × 2 transposed convolution which halves the
number of feature channels. The resulting feature maps were concatenated with the
corresponding feature map of the contracting path and convolved by two 3 × 3 con-
volutional layers followed by ReLU. At the final layer, a 1 × 1 convolutions map each
component of feature vector to the desired number of classes (Figure 7.2). A softmax
function is applied in the last layer to classify ICV and background. As a loss func-
tion, cross-entropy between the output layer and the manual segmentation reference
is used. For optimization, Nesterov Adam optimizer is applied [59, 60]. In order to
increase the mean learning rate, batch normalization [61] is used after each convolu-
tional layer (Convolution, Batch Normalization, ReLU)[61]. The learning rate of Adam
optimization is set to 0.0001. The hyper-parameters were tuned using cross-validation
on the training set. The training was stopped after 300 epochs when the loss function
became stable. The network is trained with 2D slices and batch size is 30 for each
iteration. The image intensity were normalized to the range [0, 1023] before feeding
them to the network. Data augmentation was applied during the training by random
flipping and rotation of 2D slices. The rotations ranged between 0 to 360 degrees to
mimic fetal brain angle variations. As all image intensities were normalized between
[0, 1023], we did not vary image intensities nor the contrast as an augmentation. We
have implemented the network in Keras, an open-source neural-network library writ-
ten in Python [62].

2.4 Evaluation
The automatic ICV segmentations were evaluated in 3D by means of the Dice coeffi-
cient, the mean surface distance and the Hausdorff distance [63] between the manual
and automatic segmentations per image per set.

2.5 Experiments and Results

2.5.1 Training with joint neonatal and fetal scans

We performed segmentation in fetal and neonatal MRI scans using a single trained
network. The training set consisted of 21 fetal and 9 neonatal scans. Fetal scans in the
training contained 7 scans acquired in axial, 7 scans acquired in coronal and 7 scans
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Figure 2.4: Examples of ICV segmentation in slices from fetal scans acquired in axial (left), coronal
(middle) and sagittal (right) image planes. The images are selected from the test set. A slice fromT2-
weighted image (top); segmentation achieved by the proposedmethod trainedwith a combination
of neonatal and fetal MRI (middle); manual segmentation (bottom).
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Figure 2.5: Examples of ICV segmentation in a scan acquired in sagittal plane. A slice from T2-
weighted fetal MRI scan (top row), segmentation obtained with joint training (middle row) and
manual segmentation (bottom row). The first column illustrates the segmentation in the in-plane
view. Second and third columns illustrated out-of-plane views. The slices were selected from the
test set.
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Figure 2.6: Examples of ICV segmentation in slices from fetal scans that visualized intensity inho-
mogeneity. A slice from T2-weighted image (left); segmentation achieved by the proposedmethod
trained with a combination of neonatal and fetal MRI (middle) and manual segmentation (right).
The images were selected from the test set.
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Figure 2.7: Example of ICV segmentation in one test neonate with PHVD on the left compared
with manual segmentation on the right.The infants received a temporary ventricular shunt that is
visible in some slices. The images were selected from the test set.

Figure 2.8: A slice from a scan of infant with PHVD (left) where the joint training undersegmented
cerebellum (middle) compared with reference annotation (right). The cerebellar volume, shape
and image intensity are typically different in infants with PHVD from infants without visible pathol-
ogy. The images were selected from the test set.
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Neonatal and Fetal Fetal Representative

DC MSD HD DC MSD HD DC MSD HD

Set 1 0.976 0.34 10.58 0.980 0.32 16.89 0.978 0.36 15.45

Neonatal and Fetal Neonatal Representative

DC MSD HD DC MSD HD DC MSD HD

30-weeks coronal 0.993 0.11 6.19 0.988 0.18 7.87 0.992 0.12 10.90

40-weeks coronal 0.993 0.18 7.98 0.994 0.14 8.32 0.993 0.16 9.64

40-weeks axial 0.988 0.22 7.60 0.988 0.24 7.67 0.987 0.44 25.89

Cross-sectional cohort 0.987 0.35 11.13 0.990 0.19 8.88 0.991 0.22 13.94

Infants with CHD 0.987 0.53 17.19 0.990 0.19 8.57 0.985 0.64 30.26

Infants with PHVD 0.987 0.29 14.67 0.988 0.31 15.89 0.986 0.35 17.34

Infants with stroke 0.987 0.30 14.68 0.988 0.46 11.09 0.984 0.58 19.05

Infants with asphyxia 0.980 0.34 10.58 0.970 0.62 15.54 0.963 0.80 16.41

Infants with DS 0.982 0.46 12.52 0.983 0.38 14.36 0.983 0.58 25.87

Table 2.2: Performance of the automatic segmentation expressed by the average Dice coefficient
(DC), mean surface distance (MSD) in mm, and Hausdorff distance (HD) in mm. Columns show
experiments where the network was trained with: 1) a combination of fetal and neonatal MRI
(Fetal and Neonatal) 2) fetal MRI when the test images were from fetuses (Fetal) or neonatal MRI
when test images were from neonates (Neonatal) 3) Only a representative set of images. For each
test set best results among the three experiments are indicated in bold.
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acquired in sagittal imaging orientations (21 scans) of 7 patients from Set 1. Neonatal
scans were from preterm born infants without visible pathology. Neonatal scans in-
cluded in the training consisted of 3 coronal scans acquired at 30 weeks PMA, 3 coronal
scans acquired at 40 weeks PMA, and 3 axial scans acquired at 40 weeks PMA. Note
that the training and test set were separated per subject. During the training, only in
joint training scenario, each batch was balanced between fetal scans, 30 weeks coronal
neonatal, 40 weeks axial neonatal and 40 weeks coronal neonatal scans.

The method was tested with the remaining 24 fetal scans from Set 1 that were
acquired in axial, coronal and sagittal orientation, and neonatal scans of the remain-
ing 110 patients. The obtained quantitative results are listed in Table 2.2 (first three
columns). Figure 2.4 illustrates examples of the obtained ICV segmentations in images
acquired in axial, coronal and sagittal image planes. Figure 2.5 illustrates ICV segmen-
tation results in one scan acquired in sagittal imaging plane. The segmentation results
are shown in the acquisition plane as well as in planes perpendicular to the acquisition
plane. Furthermore, Figure 2.6 illustrates examples of the ICV segmentations in slices
with intensity inhomogeneity.

Moreover, Figure 2.7 shows an example of ICV segmentation in a neonate with
PHVD. The automatic segmentation excluded the inserted shunt from the brain mask
even though PHVD scans were not included in the training data. Figure 2.8 illustrates
another example of ICV segmentation in a neonate with PHVD where the cerebellum
was undersegmented. It may be observed that in this case cerebellum has voxels of
lower intensity than images without visible pathology.

2.5.2 Training with neonatal or fetal scans

Manual annotation in a large set of scans is time-consuming and expensive. Hence, to
estimate whether the method performs better on fetal images when trained with fetal
images only and whether it performs better on neonatal images when trained with
neonatal images only, additional experiments were performed. For this, two separate
networks were trained. The first network was trained using only fetal images. This
set included scans of 7 fetuses with images acquired in axial, coronal and sagittal di-
rections. The second network was trained using only neonatal images. This training
set included images of infants scanned at 30- and 40- weeks PMA acquired in axial and
coronal directions. In both experiments, the training images were the same training
images that were used in the experiment described in Section 2.4 A when the fetal
and neonatal training images were used together in the training. No other changes in
the network architecture or training procedure were applied. The obtained results are
listed in Table 2.2 (middle three columns).



32 Chapter 2

DC MSD HD

Joint training 0.94±0.02 1.7±0.72 34.5±16.11
Auto-net 0.98±0.01 0.2±0.04 10.1±5.45

Table 2.3: Performance of the proposed method using joint training with 21 fetal and 9 neonatal
MRI scans, and performance of the publicly provided Auto-net trained with 260 fetal MRI scans.
Both methods were tested on publicly available fetal scans from Set 2. The results are expressed
by the average Dice coefficient (DC), mean surface distance (MSD) in mm, and Hausdorff distance
(HD) in mm.

DC MSD HD

Joint training 0.98±0.02 0.3±0.36 10.6±5.73
Auto-net 0.87±0.10 3.2±1.84 72.41±50.34

Table 2.4: Performance of the proposed method using joint training with 21 fetal and 9 neonatal
MRI scans and performance of the publicly available Auto-net trained with 260 MRI scans. Both
methods were tested with fetal images from Set 1. The results are expressed by average Dice
coefficient (DC), Mean surface distance (MSD) in mm, and Hausdorff distance (HD) in mm.

2.5.3 Training with representative scans

To evaluate whether it might be advantageous to train the network using representa-
tive data only, three instances of the original network were trained. One instance was
trained and tested with scans of neonates acquired at 30 weeks PMA coronal, another
instance was trained and tested with scans of neonates acquired at 40 weeks PMA
coronal, and last instance was trained and tested with scan of neonates acquired at 40
weeks PMA axial. Training images represent subsets of scans used in the experiment
where all training data was mixed. The obtained results are listed in Table 2.2 (last
three columns).

2.5.4 Second observer evaluation

To evaluate inter-observer variability, we obtained second observer manual annota-
tions for small subset of neonatal data. The evaluation was performed on 3 slices of
7 scans, i.e 21 slices in total and the results were compared to corresponding slices
annotated by the first observer. The results are listed in Table 2.6.
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Figure 2.9: Dice coefficients achieved by the proposed method using joint training with 21 fetal
and 9 neonatal MRI scans, and by the publicly provided Auto-net trained with 260 fetal MRI scans.
Both methods were tested on Set 1 (left) and Set 2 (right).

Figure 2.10: Examples of ICV segmentation in neonates acquired at 30 weeks PMA (top row) and
40 weeks PMA (bottom row). Results of the joint training (first column), the result obtained with
BET (second column), manual annotation (third column) and the original T2-weighted MRI (last
column). The images were selected from the test set.
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Joint training BET

DC MSD HD DC MSD HD

30-weeks coronal 0.99 0.11 6.19 0.91 2.05 24.92

40-weeks coronal 0.99 0.18 7.98 0.94 1.92 27.91

40-weeks axial 0.99 0.22 7.60 0.94 1.39 34.63

Cross-sectional cohort 0.99 0.35 11.13 0.93 1.83 26.76

Infants with CHD 0.99 0.53 17.19 0.95 2.36 36.46

Infants with PHVD 0.99 0.29 14.67 0.94 1.72 24.16

Infants with stroke 0.99 0.30 14.68 0.95 1.33 30.80

Infants with asphyxia 0.98 0.34 10.58 0.95 1.33 32.88

Infants with DS 0.98 0.46 12.52 0.95 1.43 14.69

Table 2.5: Performance of the joint training using fetal and neonatal scans for ICV segmentation
compared with BET. The results are expressed using the average Dice coefficient (DC), mean sur-
face distance (MSD) in mm, and Hausdorff distance (HD) in mm.

2.5.5 Comparison with state-of-the art methods

The performance of the proposed method was compared with publicly available ICV
segmentation tools. Given that BET is frequently used to segment the ICV in prema-
ture neonatal images [12], we have applied it to segment images in our test set. The
fractional intensity threshold (-f) is empirically set to 0.3. The obtained results are
presented in Table 2.5. They demonstrate that BET achieved better performance in
neonatal MRI acquired at 40 weeks PMA than in neonatal MRI acquired at 30 weeks
PMA. Figure 2.10 shows segmentations obtained with BET and joint training in a slice
from a scan acquired at 30 weeks PMA and one acquired at 40 weeks PMA.

Both slices illustrate oversegmentation of the ICV along thewhole boundary, which
is a frequent error of the BET tool visible in our test set. Quantitative results listed in
Table 2.5 show that joint training consistently achieved higher DC and lower HD and
MSD than BET.

To investigate robustness of our method to variation in scanner characteristics
and patient population, the joint training model was evaluated using publicly avail-
able fetal MRI scans from another hospital (Set 2). The results were compared with a
publicly available Auto-net [45] 1 model trained on a much larger set of representative
fetal scans from the same hospital. Even though, U-net or any fully convolutional neu-

1https://bitbucket.org/bchradiology/u-net/src
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ral network can take any arbitrary image size but the segmentation performance will
likely drop if the images in the training and test set do not have the same resolution.
Given that scans in Set 2 have different voxel sizes than our fetal images (Set 1) used
in the training, prior to analysis scans from Set 2 were resampled to the resolution of
our training images. Furthermore, the images were normalized between [0, 1023]. All
obtained results are listed in Table 2.3 and shown in Figure 2.9. Note that this model
was only trained on fetal MRI and training data did not include any neonatal MRI data.
Therefore, the evaluation was performed on fetal MRI only.

In addition, Auto-netwas evaluated on fetal images from our hospital (Set 1). Quan-
titative results are listed in Table 2.4. As in the previous experiment scans from Set
1 were resampled to the same resolution of the images used to train Auto-net (Set 2).
Furthermore, the scans were normalized between [0, 1023]. Figure 2.9 illustrates the
segmentation performance in a box plot. Note that even though the scans were resam-
pled to the same resolution in both experiments, the images had different field of view.

2.5.6 Evaluation on scans acquired with 1.5 Tesla scanner
To demonstrate the performance of the proposed method on images acquired with a
scanner exploiting a different field strength, the joint training model was evaluated
on fetal MRI scans (Set 3) acquired with 1.5 Tesla scanner. We illustrate segmentation
results in the three scans without reference standard in Figure 2.11. Visual inspection
of the results in these scans reveals that the joint training model produced accurate
ICV segmentations in scans with different field strength, although the model was not
trained with such scans.

2.5.7 Evaluation on scans with artifacts
To demonstrate the performance of proposed method on scans with intensity inho-
mogeneity and motion artifacts, the joint training model was evaluated on 5 neonatal
scans with intensity inhomogeneity and 5 neonatal scans with motion artifacts. We
illustrate segmentation results in the five scans with intensity inhomogeneity in Fig-
ure 2.12 and five scans with motion artifacts in Figure 7.8. Visual inspection of the
results in these scans reveals that the joint training model produced accurate ICV seg-
mentation in scans with motion artifacts and intensity inhomogeneity.

2.5.8 Second observer evaluation
Manual annotation in a large set of scans is time-consuming and expensive. Hence, to
estimate inter-observer variability, second observer performed manual annotations in
a small subset of neonatal data. The evaluation was performed on 3 slices of 7 scans,
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Figure 2.11: Examples of ICV segmentation in slices from fetal scans acquired with 1.5 Tesla scan-
ner in coronal (top), sagittal (middle) and axial (bottom) image planes. A slice from T2-weighted
image (left) and segmentation achieved by the proposed method trained with a combination of
neonatal and fetal MRIs (right).
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Figure 2.12: Examples of ICV segmentation in 5 neonatal MR scans with intensity inhomogeneity
artifacts. A slice from T2-weighted fetal MRI scan (first row); segmentation obtained with joint
training (second row).

Figure 2.13: Examples of ICV segmentation in 5 neonatal MR scans with motion artifacts. A slice
fromT2-weighted fetalMRI scan (first row); segmentation obtainedwith joint training (second row).
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First Observer Second Observer

DC MSD HD DC MSD HD

30-weeks coronal 0.993 0.656 11.52 0.983 1.660 16.92

40-weeks coronal 0.992 0.891 9.231 0.994 0.474 6.332

40-weeks axial 0.993 0.828 8.752 0.992 0.979 9.620

Table 2.6: Evaluating joint training segmentation performance with manual segmentation ob-
tained by two different observers. The results are expressed in terms of Dice coefficient (DC),
Hausdorff distance (HD) andmean surface distance (MSD). The HD andMSD are expressed in mm.
Note that the evaluation was performed in 3 slices in 7 scans, totalling to 21 slices. The segmenta-
tions are compared with the segmentations of the first observer in the same slices.

totally in 21 slices. These segmentations were compared with the segmentations of
the first observer in the same slices. The results are listed in Table 2.6.

2.6 Discussion and conclusion

An automatic method for segmentation of the ICV in fetal and neonatal brainMR scans
was presented. The proposed method employs a fully convolutional network with U-
net architecture. It was trained by using a combination of neonatal and fetal MRI and
the results demonstrate accurate segmentation of ICV in fetal and neonatal MR scans
regardless the orientation of the image acquisition, the age of infants at the time of
scanning or the presence of pathology. Unlike previous ICV segmentation methods
developed for fetal or neonatal MRI [30, 48, 50], the proposed method does not require
brain localization or prior information about the patient age or expected anatomy.

In this study, 2D analysis was applied. Even though 3D analysis regularly allows
better exploitation of the available information compared to 2D analysis, 2D analysis
was advantageous as it minimized the risk of overfitting and allowed analysis of scans
with large slice thickness that led to substantial changes in the anatomy [12, 64, 65].
Moreover, 2D analysis was less influenced by missing and corrupted slices resulting
from continuous fetal motion.

Generating manual segmentation is a cumbersome and extremely time-consuming
task. The results illustrate that with a small number of available manual segmentation
used for training, the network achieves a competitive and robust results in a large
test set.Using semi-automatic segmentation comprised of automatic presegmentation
and subsequent manual correction to gnerate refrence standard for training purposes
could make the process faster. Availability of a large training set could offer possibility
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to investigate the impact of the size of the training set on the method performance as
well as research towards the requirements regarding characteristics of the training set
for employment in theMRIs presenting pathology or artifacts. This may be interesting
direction for future research.

Although the network was trained with images containing no visible pathology,
the evaluation was performed on a large and diverse set of scans, which includes scans
with pathology. The segmentation results in neonatal scans with or without lesions
are comparable. Note that large lesions in the brain strongly affecting tissue appear-
ance (infants with stroke), morphological changes (infants with Down syndrome and
PHVD), and presence of implants (shunts) that were mostly excluded (PHVD) (see
Figure 2.7).

We evaluated the proposed method on scans with artifacts such as intensity inho-
mogeneity and motion artifacts. The visual inspection demonstrate that even thought
scans with artifacts were not in the training, the proposed approach is able to segment
ICV.

Furthermore, we investigated whether it is feasible to train a single instance of the
network applicable to both fetal and neonatal scans, or whether better performance
can be achieved by training a separate network using only fetal or only neonatal scans.
The results show that in both cases DC ranges from 0.98 to 0.99.

Moreover, we compared performance using joint training with fetal and neona-
tal scans against training using representative scans only. The results demonstrate
that in both cases accurate segmentation was achieved when evaluating the overlap
between automatic and reference segmentations (0.98 to 0.99 Dice coefficient). The
results also demonstrate that training with diverse images using fetal and neonatal
scans reduced false positive voxels far from the intracranial volume surface leading to
lower Hausdorff distances and mean surface distances in all sets. Training with both
fetal and neonatal scans indicated the most noticeable improvement in infants with
asphyxia. Despite the differences in image acquisition, image orientation, and brain
morphology, fetal and neonatal scans share common features that improve the ability
of the network to generalize, making it more robust and compensating for the lack of
representative data.

To investigate robustness of the proposed method to variations in scanner char-
acteristics and patient population, the method was evaluated using publicly available
fetal MRI scans from another hospital (Set 2). The results were compared with a pub-
licly available Auto-net [45] model trained on a much larger set of representative fetal
scans from the same hospital. The results show that our model did not outperform
the dedicated data-specific approach. Nevertheless, it achieved DC, MSD and HD of
0.94, 1.7 and 34.5 respectively. Similarly, we evaluated Auto-net on fetal scans from
our hospital (Set 1). The results demonstrate that the proposed method trained on rep-
resentative fetal scans from our hospital outperformed Auto-net trained on different
data. The two experiments indicate that reasonable performance can be achieved us-
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ing different scans but also underline the importance of training with representative
data. In future research, investigating interpretability of model using saliency map
[66] can demonstrate a better understanding of limitations in network performance.

In addition, the proposed method was compared with the publicly available and
widely used BET for the segmentation of neonatal MRIs. Although BET is known to
achieve accurate segmentation of ICV in adults, our results demonstrate that it is less
suited for neonatal brain. Our dedicated method clearly outperformed BET.

To conclude, this study presented a method for automatic ICV segmentation in
neonatal and fetal MRI. Despite the variability among the evaluated scans, the method
obtained accurate segmentation results in both fetal and neonatal MR scans. Hence,
the algorithm provides a generic tool for segmentation of the ICV that may be used
as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR
scans.
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Abstract
MR images of fetuses allow clinicians to detect brain abnormalities in an early stage
of development. The cornerstone of volumetric and morphologic analysis in fetal MRI
is segmentation of the fetal brain into different tissue classes. Manual segmentation is
cumbersome and time consuming, hence automatic segmentation could substantially
simplify the procedure. However, automatic brain tissue segmentation in these scans
is challenging owing to artifacts including intensity inhomogeneity, caused in partic-
ular by spontaneous fetal movements during the scan. Unlike methods that estimate
the bias field to remove intensity inhomogeneity as a preprocessing step to segmen-
tation, we propose to perform segmentation using a convolutional neural network
that exploits images with synthetically introduced intensity inhomogeneity as data
augmentation. The method first uses a CNN to extract the intracranial volume. There-
after, another CNN with the same architecture is employed to segment the extracted
volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventric-
ular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracere-
bral cerebrospinal fluid. To make the method applicable to slices showing intensity
inhomogeneity artifacts, the training data was augmented by applying a combination
of linear gradients with random offsets and orientations to image slices without ar-
tifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean
surface distance (MSD) per tissue class were computed between automatic and man-
ual expert annotations. When the training data was enriched by simulated intensity
inhomogeneity artifacts, the average achieved DC over all tissue classes and images in-
creased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results
demonstrate that the proposed approach can potentially replace or complement pre-
processing steps, such as bias field corrections, and thereby improve the segmentation
performance.
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Figure 3.1: Examples of slices with intensity inhomogeneity in T2 weighted MRI of the fetus
cropped to the brain. Note that the full slices also visualize a larger part of the fetus as well as
the maternal body.

Slice N−1 Slice N Slice N+1

Figure 3.2: Example of a fetal T2 weighted MRI with intensity inhomogeneity (middle) and the slice
before (left) and after (right) from the same scan, both without artifacts. Structures outside the
fetal cranium have been masked out.

3.1 Introduction
For automatic segmentation of fetal brain tissue in reconstructed MR volumes, Habas
et al. [67] proposed a method using an atlas-based expectation maximization (EM)
model to segment white matter (WM), gray matter, germinal matrix, and extracere-
bral cerebrospinal fluid (eCSF). Prior to performing the segmentation, another EM
model was used for bias field correction. Gholipour et al. [68] proposed a method
for segmentation of the ventricles in fetal MRI. As a preprocessing step, in addition
to using volumetric reconstructions, intensity inhomogeneity was corrected using the
non-parametric entropymaximizationmethod [69]. Initial segmentationwas obtained
with the use of STAPLE [70], then the final segmentation was derived with a proba-
bilistic shape model that incorporates intensity and local spatial information. Serag
et al. [71] proposed an atlas-based brain segmentation method for both neonatal and
fetal MRI. Fetal scans were reconstructed into a single 3D brain volume using the slice-
to-volume reconstruction method described in [72] and intensity inhomogeneity was



46 Chapter 3

removed using the N4 algorithm [73]. Thereafter, the fetal brain scans were segmented
into cortex, ventricles and hemispheres.

Deep learning methods have recently been very successful and have often out-
performed traditional machine learning and model-based methods in medical image
analysis [31] including brain MRI [36, 74]. A major strength of these networks is their
ability to extract the features relevant for the tasks directly from the data. There is
no need anymore to first derive a set of handcrafted features from the image as input
to a classifier or model, the networks rather learn themselves to extract and interpret
features relevant to the segmentation task. Therefore, deep learning methods often
achieve a better performance than traditional machine learning methods with hand-
crafted features. However, CNNs usually require large sets of diverse training data. To
enlarge the size of training set and to ensure robustness to expected variability in the
data, some studies use data augmentation techniques such as random rotation, random
translation and random noise injection [75, 76]. We therefore hypothesize that, while
artifacts such as intensity inhomogeneity are challenging for traditional approaches
and therefore normally require preprocessing of the images, CNNs may be able to
adapt and become invariant to such artifacts if they are presented enough examples
during training. However, manual segmentation of slices with intensity inhomogene-
ity is much more cumbersome than segmentation of artifact free slices so that a sizable
training database is difficult to obtain. We therefore propose to tackle one of the most
common artifacts in fetal MRI, namely intensity inhomogeneity, by randomly adding
synthetic intensity inhomogeneity to slices for which a corresponding reference seg-
mentation is available. By only mutating the intensity values but not the orientation
or shape of structures in the image, the same reference segmentation can be used as
ground truth. This tailored data augmentation strategy affects network training only.
At inference time, in contrast to previous methods, no complex preprocessing of the
image is required.

Furthermore, previous methods focused on segmenting the brain into the three
main tissue classes: WM, cortical gray matter and ventricles. However, characteristics
of other tissue classes, such as cerebellum (CB) and brain stem (BS), are important to
understand and predict healthy or aberrant brain development in preterm infants of
similar gestational age as fetuses [77]. The cerebellum is particularly of clinical interest
as it is one of the fastest growing brain regions during the last trimester of pregnancy
[78].

Another challenge for segmentation of the fetal brain in MRI is the large field of
view of these scans. Since the fetus is scanned in utero, the images also visualize parts
of the maternal and the fetal body, and not only the head of the fetus as would be
the case in regular brain MRI. Similar to previous publications [12, 22], we therefore
propose to first automatically segment the intracranial volume (ICV) of the fetus to
identify the region of interest. A number of studies proposed segmentation of the ICV
in fetal MRI [30, 41, 46, 79]. Following our previous work [46], we segment the ICV
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directly in the entire image to fully automatically detect a region of interest.
The method we propose performs segmentation of fetal and brain tissues. The

method first identifies the ICV from the fetal MRI slices using a convolutional neural
network. Subsequently, the identified volume i S, cortical gray matter (cGM) and eCSF
in contrast to previous methods which focused on WM, cGM and cerebrospinal fluid
only.

The remainder of this paper is organized as follows: in Section 2 the data set used
for the method development and evaluation is described, in Section 3 the method for
fetal brain segmentation and the simulation of intensity inhomogeneity are described,
in Section 4 the evaluation method is given. The performed experiments and their
results are presented in Section 5, followed by a discussion of the method and the
results in Section 6. Our conclusions are given in the final section.

3.2 Data

3.2.1 Fetal MRI dataset

This study includes T2-weighted MR scans of 12 fetuses (22.9–34.6 weeks post men-
strual age). Images were acquired on a Philips Achieva 3T scanner at the University
Medical Center (UMC) Utrecht, the Netherlands, using a turbo fast spin-echo sequence.
Repetition time (TR) was set to 2793 ms, echo time (TE) was set to 180 ms and the
flip angle to 110 degrees. The acquired voxel size was 1.25 × 1.25 × 2.5 mm3, the re-
constructed voxel size was 0.7 × 0.7 × 1.25 mm3, and the reconstruction matrix was
512 × 512 × 80. The images were not reconstructed using high resolution framework.
We included images acquired in coronal plane as they appeared less affected by fetal
motion in comparison with images acquired in axial or sagittal plane. The orienta-
tion of the fetal brain was determined using fast survey scanning. During the scan,
the mother was lying on her left side to reduce the chance of inferior vena cava syn-
drome. The local ethical board approved the study and parental informed consent was
obtained.

The reference standard was defined by manual annotation of all scans in 2D slices
by a trained medical student. The brain was segmented into seven tissue classes: CB,
BGT, vCSF, WM, BS, cGM and eCSF. Annotation was accomplished by manual pixel-
wise painting of the brain tissues in each coronal image slice using an in-house de-
veloped software. The labeling of each of the seven classes was indicated by a color
overlay (Figure 3.3). The software allowed the user to zoom-in, zoom-out and scroll
through the slices during the manual segmentation. The manual segmentation pro-
tocol was identical to the protocol described by Išgum et al. [22] for neonatal brain
tissue segmentation. The ICV was defined as the union of all manually segmented
tissue classes.

In total 15 slices (1.5%), 7 in the training set and 8 in the test set, were too distorted
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by severe motion artifacts to be manually annotated. In total 126 of the remaining,
manually annotated slices (26.2%), 32 in the training set and 94 in the test set, were
identified as affected by intensity inhomogeneity that hampered manual annotation.

3.2.2 Neonatal MRI dataset
While we propose a method aimed specifically at segmentation of fetal MRI scans, the
proposed segmentation approach and especially the data augmentation technique that
simulates intensity inhomogeneity (detailed in the following section) might be useful
for brain segmentations in MRI scans. Therefore, to evaluate the applicability of this
technique to a different MRI data set, we additionally included nine brain MR scans of
preterm born infants.

T2-weighted MR images were acquired on a Philips Achieva 3T scanner at the Uni-
versity Medical Center Utrecht, the Netherlands. The images were made with Turbo
Field Echo (TFE) and Turbo Spin Echo (TSE) sequences with TR set to 4847 ms and TE
set to 150ms. The scans were acquired at 40weeks of post menstrual age in the coronal
plane. The acquired voxel size was 0.35×0.35×1.2mm3 and the reconstruction matrix
was 512 × 512 × 110. The reference standard was defined by manual annotation of an
expert into seven tissue types (CB, BGT, vCSF, WM, BS, cGM and eCSF) in MR scans
without visible intensity inhomogeneity artifacts. Manual annotation was performed
using the same protocol as described above for fetal MRI. These scans are part of the
NeoBrainS12 segmentation challenge [80] and did not show intensity inhomogeneity
artifacts.

The remaining four scans showed intensity inhomogeneity and they were used as
a test set. However, manual reference segmentations in these scans were not available
and, consequently, we evaluated the segmentation performance in this set only by
visual inspection.

3.3 Method
To simplify the brain tissue segmentation and allow the segmentation method to focus
on the fetal brain only, the fetal ICV is first automatically extracted. Subsequently, the
identified ICV is automatically segmented into seven tissue classes. An overview of
this pipeline is shown in Figure 3.4. The same network architecture, described in
Section 3.3.1, was used for ICV extraction and brain tissue segmentation.

3.3.1 Brain segmentation
Extraction of ICV and its subsequent segmentation into seven brain tissue classes are
achieved with two fully convolutional networks (FCN) with identical U-net architec-
ture [52] trained with 2D slices. Each network is trained independently to perform its
specific task. The U-net architecture consists of a contracting path and an expanding
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Image slice Manual annotation

Figure 3.3: Examples of manual reference segmentation in coronal fetal MRI, showing slices
cropped to the region of interest (first column) and the slices overlaid with the manual segmenta-
tions (second column).

path. The contracting path consists of repeated 3×3 convolutions followed by rectified
linear units (ReLUs). A 2 × 2 max pooling downsamples the features. The number of
feature channels doubles after every two convolutional layers. In the expansion path,
an up-sampling is followed by a 2 × 2 convolution which halves the number of fea-
ture channels. The results are concatenated with the corresponding contraction path
and convolved by two 3×3 convolutional layers followed by a ReLU. At the final layer,
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Figure 3.4: Proposed pipeline for automatic tissue segmentationmethod. The fetal ICV is automat-
ically segmented in the original slice. Thereafter, the image is automatically cropped to the region
of interest (ROI) so that the tissue segmentation can be restricted to the fetal ICV only.

one 1×1 convolutional layer maps each component of the feature vector to the desired
number of classes. Batch normalization [61] is applied after all convolutional layers
to allow for faster convergence. The network architecture is illustrated in Figure 7.2.

Both networks were trained using stochastic gradient descent with back propaga-
tion. We optimized both networks using the Adam optimizer with Nesterov momen-
tum [59, 60] using a fixed learning rate of 0.0001. Standard data augmentation tech-
niques, namely random flipping and rotation, were used during training to increase
the variation of the training data and to mimic different orientations of the fetal brain.
The slices were flipped in horizontal and vertical direction with 50% probability and
were rotated with a rotation angle randomly chosen between 0 and 360 degrees.

Figure 3.5: Network architecture: The network consists of a contraction path and an expansion
path. The contraction path consists of repeated convolution layers followed by max pooling, and
the expansion path consists of convolution layers followed by upsampling.

To first identify the intracranial area in the image, a U-net was trained by minimiz-
ing the cross-entropy between network output and manual segmentation for all pixels
in each slice in each training batch. The convolutional neural network was trained
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with batches of 12 slices in each iteration. Given that the network performs voxel
classification, ICV segmentation may result in small isolated clusters of false positive
voxels outside the ICV. These were removed by discarding 3D connected components
smaller than 3 cm3. This threshold was empirically chosen in this study. It was chosen
large enough to remove small false positive clusters of voxels, and also small enough
to prevent removing any parts of the brain that are not fully connected in 3D. The
latter is often the case in scans with substantial motion artifacts where the signal is
lost in one slice and consequently, the ICV segmentation is not fully connected in 3D.

The segmented intracranial fetal areas were further segmented into seven tissue
classes using another, separately trained, U-net. Each pixel in the image was classi-
fied as either CB, BGT, vCSF, UWM, BS, cGM, eCSF or background. In contrast to the
network for ICV segmentation, this network was trained by maximizing the Dice coef-
ficient between network output and manual segmentation. This was done to achieve
robustness against an imbalance of samples from the different classes. This network
was trained with batches of 18 slices in each iteration. We have implemented the net-
work in Keras, an open-source neural-network library written in Python [62].

3.3.2 Intensity inhomogeneity augmentation (IIA)

To make the network segmenting brain tissue classes robust to intensity inhomogene-
ity artifacts, we trained this network with slices containing simulated intensity inho-
mogeneity artifacts. The artifacts were simulated by applying a combination of linear
gradients with random offsets and orientations to a slice without intensity inhomo-
geneity artifacts (I):

Z = I × ((X + x0)2 + (Y + y0)2), (3.1)

where X and Y are 2D matrices with integer values from zero to the size of the image
in x and y direction, respectively. The offsets x0 and y0 control the balance between
the x and y components and were randomly chosen from different ranges (x0: [43,
187]; y0: [-371, 170]). The optimal ranges were found with a random hyperparameter
search. Additionally, the gradient patterns were randomly rotated between 0 to 360
degree to mimic intensity inhomogeneity in various directions. These random compo-
nents, offsets and rotation, result in inhomogeneity patterns that allow the network to
become invariant to the location and orientation of regions with low and decreasing
contrast. The intensities in both the original slices as well as the slices with simulated
intensity inhomogeneity were normalized to the range [0, 1023] before feeding them
to the network. Figure 3.6 shows examples of two slices from a fetal MRI scan with
added synthetic intensity inhomogeneity.
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Artifact-free slice Random inhomogeneity pattern Slice with synthetic inhomogeneity

Figure 3.6: Example of coronal slices with simulated intensity inhomogeneity. Original slice (first
column), simulated intensity inhomogeneity pattern (second column) and the image slice after
adding the synthetic intensity inhomogeneity artifact (third column).
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Training set Training set description
Set 1 (fetal) 6 scans Excluding slices with intensity inhomogeneity artifacts
Set 2 (fetal) 6 scans Including slices with intensity inhomogeneity artifacts
Set 3 (neonatal) 3 scans Intensity inhomogeneity not visible in any slice

Table 3.1: The fetal MRI dataset was randomly divided into a training and a test set each containing
6 scans. We defined two training sets with fetal data: Set 1 contained 6 scans, but without those
slices in which intensity inhomogeneity was visible. Set 2 contained the entire slices of 6 scans.
The neonatal MRI dataset was divided into a training set with three scans and a test set with the
six remaining scans (Set 3). The test set in all three sets contained 6 scans.

3.4 Evaluation
The automatic brain tissue segmentation was evaluated by means of the Dice coeffi-
cient (DC) for volume overlap and the mean surface distance (MSD) between manual
reference segmentation and automatically obtained segmentation. In the fetal MRI
scans, thesemetrics were calculated in 2D, i.e., per slice, andwere then averaged across
all slices. In the neonatal MRI scans, following previous work [12], these metrics were
calculated in 3D.

3.5 Experiments and Results
In our experiments, we first evaluated the overall segmentation performance of the
proposed pipeline with respect to the different tissue classes. To evaluate the influ-
ence of the proposed intensity inhomogeneity augmentation technique with the stan-
dard augmentation techniques, the segmentation performance before and after apply-
ing intensity inhomogeneity augmentation was evaluated. Furthermore, we evalu-
ated whether this augmentation technique is able to generalize to different data, i.e.,
whether it leads to similar performance improvements in neonatal brain segmentation.
The fetal MRI dataset was randomly divided into a training and a test set. Each set con-
tained 6 scans. The neonatal MRI dataset was divided into a training set with 3 scans
and a test set with the remaining 6 scans for which the manual reference segmenta-
tions of two scans were available. The training and test sets are listed in Table 3.1.

3.5.1 Segmentation performance

The performance of the proposed method using standard augmentation and the pro-
posed IIA as described in Section 3.3 was evaluated. Slices with intensity inhomo-
geneity artifacts resulting from image acquisition were excluded from the training
data. The average performance in the six test scans is listed in Table 3.2 for each of the
seven tissue classes (Set 1). The average DC ranged from 0.80 for CB to 0.94 for eCSF
and the average MSD ranged from 0.62 mm for CB to 0.18 mm for BS. Furthermore,
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to evaluate whether IIA improves the performance differently in slices with artifacts
than in artifact free slices, we compared the performance on slices with clearly visible
intensity inhomogeneity artifacts and slices without visible artifacts. These results are
also listed in Table 3.2. As shown, the automatic segmentations were less accurate on
slices with intensity inhomogeneity strong enough to hampermanual annotation com-
pared with slices without visible intensity inhomogeneity. Figure 3.7 and Figure 3.8
illustrate the segmentation performance on slices with intensity inhomogeneity and
without visible intensity inhomogeneity, respectively. Note that these results were
obtained with networks trained without any slices with intensity inhomogeneity arti-
facts resulting from the image acquisition, but slices with simulated intensity inhomo-
geneity were used for training. Excluding slices with intensity inhomogeneity from
the training set is a more realistic training scenario because manual segmentation of
such slices is cumbersome and reference segmentations for such slices might there-
fore not be available. However, extending the training set with image slices affected
by real intensity inhomogeneity artifacts but in which manual annotation was still
feasible could potentially further improve the performance. We therefore trained the
networks also including slices with intensity inhomogeneity artifacts resulting from
image acquisition (Set 2). The quantitative results are listed in Table 3.3. As shown in
the table, in this experiment, we also separately evaluated the performance and impact
of IIA in slices with visible and without visible intensity inhomogeneity artifacts.

Finally, we compared the performance of the proposed fetal brain tissue segmenta-
tion method with the performance of previous methods (Table 3.4). The performance
of the proposed method was comparable to the performance of other methods, even
though it performs a finer segmentation into seven tissue classes instead of only four
[67] or three [71] tissues. The performance of previous methods is taken from the
literature. Hence, the methods have been evaluated using different data set and thus
this comparison can provide an indication only.

3.5.2 Comparison of data augmentation techniques

To evaluate the influence of the proposed IIA as well as the influence of the standard
data augmentation techniques used in this study (random flipping and random rota-
tion), the following experiments using fetal scans were performed. In this experiment
using fetal scans, all slices with intensity inhomogeneity were removed from the train-
ing set (Set 1). First, a network was trained without any data augmentation to serve as
baseline for the comparison. Second, a network was trained using random flipping of
the training slices to augment the training data. Third, a network was trained using
random flipping and random rotation of the training slices. Finally, as presented in
Section 3.5.1, a network was trained using random flipping and random rotation, and
additionally with IIA, i.e., randomly simulated intensity inhomogeneity. In this last
experiment, all slices were manipulated with IIA during the training. Results of this
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CB BGT vCSF WM BS cGM eCSF Mean
All test slices IIA DC 0.802 0.889 0.875 0.922 0.930 0.829 0.943 0.884

MSD 0.620 0.414 0.470 0.384 0.181 0.318 0.188 0.368
Without IIA DC 0.688 0.807 0.724 0.849 0.850 0.672 0.820 0.773

MSD 0.995 0.726 1.331 0.875 0.253 0.769 0.549 0.785
Slices with II IIA DC 0.694 0.901 0.807 0.899 0.947 0.782 0.877 0.844

MSD 0.813 0.372 0.807 0.565 0.286 0.418 0.416 0.525
Without IIA DC 0.467 0.572 0.485 0.744 0.704 0.492 0.678 0.592

MSD 1.724 1.340 3.742 1.656 0.629 1.275 1.000 1.624
Slices without II IIA DC 0.754 0.914 0.854 0.918 0.926 0.829 0.923 0.874

MSD 0.428 0.406 0.729 0.426 0.159 0.351 0.241 0.392
Without IIA DC 0.719 0.837 0.802 0.902 0.933 0.758 0.870 0.832

MSD 0.536 0.502 0.675 0.595 0.208 0.446 0.403 0.481

Table 3.2: Performance of fetal brain tissue segmentation into seven tissue classes when the net-
work is trained on slices without intensity inhomogeneity resulting from image acquisition. The
network is evaluated on the entire test set and additionally on only the slices with intensity in-
homogeneity artifacts (94 slices) and on the slices without visible intensity inhomogeneity artifacts
(357 slices). The segmentation performance with intensity inhomogeneity augmentation (IIA) used
during training is compared with the performance of the same network without IIA. The results are
expressed as the mean Dice coefficient (DC) and the mean surface distance (MSD) in mm.

CB BGT vCSF WM BS cGM eCSF Mean
All test slices IIA DC 0.794 0.931 0.874 0.919 0.946 0.835 0.944 0.892

MSD 0.715 0.428 0.434 0.381 0.195 0.307 0.182 0.377
Without IIA DC 0.778 0.887 0.851 0.923 0.931 0.821 0.940 0.876

MSD 0.771 0.501 0.521 0.440 0.193 0.356 0.195 0.425
Slices with II IIA DC 0.719 0.906 0.816 0.901 0.934 0.790 0.878 0.849

MSD 0.735 0.426 0.703 0.613 0.278 0.398 0.413 0.509
Without IIA DC 0.722 0.877 0.842 0.905 0.941 0.801 0.885 0.853

MSD 0.951 0.535 0.705 0.521 0.267 0.351 0.397 0.532
Slices without II IIA DC 0.749 0.905 0.884 0.927 0.926 0.856 0.934 0.883

MSD 0.489 0.438 0.388 0.343 0.150 0.272 0.212 0.327
Without IIA DC 0.731 0.923 0.888 0.933 0.933 0.850 0.932 0.884

MSD 0.520 0.402 0.363 0.360 0.141 0.290 0.215 0.327

Table 3.3: Performance of fetal brain tissue segmentation into seven tissue classes when the net-
work is trained with slices with intensity inhomogeneity resulting from the image acquisition. The
network is evaluated on the entire test set and additionally on only slices with intensity inhomo-
geneity (94 slices) and on the slices without intensity inhomogeneity (357). The segmentation per-
formance with intensity inhomogeneity augmentation (IIA) in the training is compared with the
performance of the same network without IIA in the training. The results are expressed as the
mean Dice coefficient (DC) and the mean surface distance (MSD) in mm.
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Image slice Flip & Rotation Flip & Rotation & IIA Reference

Figure 3.7: Examples of automatic brain tissue segmentation in slices with visible intensity inho-
mogeneity. A slice from T2-weighted fetal MRI scan with visible intensity inhomogeneity (first col-
umn); segmentation obtained with network only using flipping and rotation augmentation (second
column); segmentation obtained with network using IIA (third column); manual reference segmen-
tation (fourth column).

last experiment are listed in Table 3.2.

The achieved average DC and MSD for each scan in the test set are shown in
Figure 3.9. The performance improved in all scans the more data augmentation was
used and especially further improved when IIA was added in addition to the standard
data augmentation techniques. IIA largely reduced performance differences between
different scans, which standard augmentation techniques were not able to achieve.
The performance improvement was particularly large in a scan in which nearly all
slices showed intensity inhomogeneity (yellow marker in Figure 3.9). With IIA, the
segmentation performance reached an accuracy comparable to that achieved on scans
with fewer artifacts.

Additionally, the achieved average DC and MSD for each tissue class are shown in
Figure 3.10. Overall, all augmentation methods improved segmentation performance.
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Image slice Flip & Rotation Flip & Rotation & IIA Reference

Figure 3.8: Examples of automatic brain tissue segmentation in fetal images acquired in the slices
without visible intensity inhomogeneity. A slice from T2-weighted fetal MRI scan with visible in-
tensity inhomogeneity (first column); segmentation obtained with network using only flipping and
rotation augmentation (second column); segmentation obtained with network additionally using
IIA (third column); manual reference segmentation (fourth column).

Adding augmentation based on random flipping and rotation of the image slices im-
proved the segmentation of CB, BS, vCSF, BGT noticeably but not the segmentation of
WM, cGM and eCSF. IIA was able to further improve the segmentation performance
in all tissue classes including WM, cGM and eCSF. Overall, CB segmentation perfor-
mance benefited the most from all augmentations where the DC increased from 0.3 to
0.8. Furthermore, augmentation based on random rotation severly influenced perfor-
mance in segmentation of BGT, BS and CB.

3.5.3 Impact of extent of intensity inhomogeneity augmentation

To assess the impact of the proportion of slices in each training batch with simulated
intensity inhomogeneity on the network performance, we trained the network with
different percentage of artifact free slices to slices with simulated intensity inhomo-
geneity. In this experiment, all slices with intensity inhomogeneity were removed
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CB BGT vCSF WM BS cGM eCSF
Proposed Method 0.794 0.931 0.874 0.919 0.946 0.835 0.944
Hebas et al. [67] - - 0.900 0.900 - 0.820 -
Serag et al. [71] - - 0.920 0.900 - 0.840 -

Table 3.4: Segmentation performance of the proposed method and of other methods evaluated
with Dice coefficient. Performance of previous methods is taken from the literature. Hence, this
comparison can be used as indication only.

from the training set (Set 1). We varied number of slices with added synthetic inten-
sity inhomogeneity from 0% to 100%. Figure 3.11 shows the obtained results. Training
with only simulated slices led to slightly worse performance compared with a mix of
original and manipulated slices. Even having only 20% of the slices with synthetic
intensity inhomogeneity already improved the performance substantially. There was,
however, nomarked improvement for larger percentages of slices with synthetic inten-
sity inhomogeneity, the performance was comparable for percentage of 20% to 100%.

3.5.4 Evaluation of IIA on neonatal brain segmentation
Intensity inhomogeneity is an artifact that occurs in various of MRI scans, albeit of-
ten to lesser extent than in fetal MRI. To asses whether the proposed augmentation
technique-IIA-is also able to improve the performance of a segmentation task in other
MR images, we trained the brain tissue segmentation network to perform segmenta-
tion in neonatal brain MRI scans. Following previous work [12] to limit the number
of voxels considered in the classification, brain masks were generated with BET [23].
The network was trained with three scans and tested with the remaining two scans
(Set 3). Like in the previous experiments, the network was first trained using standard
data augmentation, i.e., using random flipping and rotation of the training slices as
described in Section 3.3, and subsequently the network was trained additionally with
IIA. The obtained segmentation results are listed in Table 3.5. As the two scans in
the test set did not show any intensity inhomogeneity artifacts, we additionally quali-
tatively evaluated the segmentation performance on four scans with visible intensity
inhomogeneity artifacts for which manual reference segmentations were not avail-
able. We illustrate segmentation results in the four scans without reference standard
in Figure 3.12. In [12] these scans were not analyzed due to the presence of artifacts.
Visual inspection of the results in these scans reveals that the segmentation was more
accurate when IIA was used, particularly in BGT, BS, vCSF and eCSF.

3.6 Discussion
We presented a pipeline for automatic segmentation of the fetal brain into seven tissue
classes inMRI. Themethod consists of two fully convolutional networks with identical
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CB BGT vCSF WM BS cGM eCSF Mean
All test slices With IIA DC 0.857 0.883 0.776 0.825 0.765 0.500 0.600 0.744

MSD 0.919 0.677 0.751 0.385 0.510 0.375 0.625 0.643
Without IIA DC 0.858 0.854 0.737 0.819 0.776 0.510 0.596 0.736

MSD 1.465 1.359 0.617 0.393 1.383 0.372 0.635 0.889

Table 3.5: Performance of neonatal brain segmentation into seven tissue classes. The segmenta-
tion performance with IIA is compared with the performance of the same network without IIA. The
results are expressed as the mean Dice coefficient (DC) and the mean surface distance (MSD) in
mm.

U-net architectures. The first network extracts ICV and the second network performs
segmentation of the brain into seven tissue classes. The results demonstrate that seg-
mentation using the proposed data augmentation with simulated intensity inhomo-
geneity artifacts leads to accurate segmentations of the brain tissue classes. Moreover,
we demonstrated that the method performs accurate segmentation while trained us-
ing manual reference segmentation only in slices without artifacts that occur during
image acquisition. In other words, we showed that the proposed data augmentation
is able to compensate for the lack of training data in which performing manual anno-
tations is cumbersome.

Using the proposed data augmentation technique, we were able to achieve state-
of-the-art segmentation performance with a substantially lower number of training
scans. Our method was trained with only 6 fetal scans while previous methods used
20 [68] and up to 80 fetal scans [28]. Given that manual annotation of a fetal brain MR
scan into 7 tissue classes requires about 40 hours, reducing the number of themanually
annotated training scans substantially reduces the required manual annotation effort
and associated costs.

Intensity inhomogeneity is a frequently occurring artifact in MRI and often ham-
pers automatic image analysis due to diminishing contrast between different tissues.
We demonstrated that the described method based on convolutional neural networks
can become more robust to these artifacts by training with data augmented with simu-
lated random intensity inhomogeneities. This can potentially replace or complement
prepossessing steps, such as bias field corrections or volumetric reconstructions that
would require acquisition of additional MR data. Simulating artifacts instead of man-
ually annotating compromised data for training supervised methods is beneficial as
manual reference annotations can be obtained more easily and with higher accuracy
for artifact-free data.

Standardly used data augmentation techniques, random flipping and rotation of
the image slices, improved the segmentation performance in CB, BS, BGT, and vCSF
considerably but had little impact on other tissue types. Introducing training data with
simulated intensity inhomogeneity further improved the segmentation performance
in all tissue classes, including WM and cGM, which are often challenging to separate
due to low inter-tissue contrast when intensity inhomogeneity artifacts are present.
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Moreover, a frequent mistake of the automatic segmentation method when training
without IIA was mistaking vCSF for eCSF and vice versa. Using IIA helped to over-
come this issue in many cases, presumably by forcing the network not to focus on the
intensity values only but additionally on other intensity invariant information such as
shape and context.

Moreover, evaluating augmentation techniques per scan showed that the MSD re-
duces with adding random flipping and rotating augmentation in all scans and DC
improves in all scans except one (indicated with a yellow marker in Figure 3.9). Ret-
rospective visual inspection revealed that this scan has intensity inhomogeneity in
nearly all slices. Even though the intensity inhomogeneity is not severe in all slices,
the automatic segmentation was still severely affected. Experiments show that adding
IIA in the training helped to overcome this issue and increased the segmentation per-
formance in all scans.

Furthermore, our experiments illustrate that training the network with IIA in-
creases the segmentation performance even in slices without visible intensity inho-
mogeneity. IIA makes the network more robust to intensity variations in MRI, forcing
the network not to focus only on the tissue intensity for assigning a label.

In the current study, the segmentation method was evaluated on fetal brain MRI
acquired in the coronal plane. Since the presented method is entirely supervised it can
be readily applied to fetal MRI acquired in axial or sagittal plane if manually annotated
training data is available.

We relied on the U-net architecture for ICV and brain tissue segmentation in fetal
MRI. However, the proposed IIA can be used for data augmentation regardless of the
network architecture or even with supervised methods not based on convolutional
neural networks. We did not evaluate IIA with other architectures but it would likely
improve the segmentation performance of other networks with different architecture
as supervised CNNs regularly profit from large and diverse training data.

Additionally, we evaluated IIA on neonatal MRI. The visual inspection shows a
substantial improvement on slices with artifacts. In the images without visible ar-
tifacts the quantitative results showed slight improvement when IIA is applied. The
performance of the segmentation in the neonatal brain scans is lower than obtained by
our previous method [12] as here presented network was not specifically adjusted for
segmentation of neonatal brain tissues. However, the results clearly demonstrate the
benefit of training with IIA. IIA could be readily applied to the segmentation method
presented in [12] enabling the multi-scale CNN to segment neonatal brain scans with
intensity inhomogeneity artifacts as shown in Figure 3.12.

In this study, 2D analysis was applied since fetal MR images has inter-slice motion
due to the 2D MR acquisition. Additionally, in a few slices severe motion artifacts
occurred. These slices were excluded from the training and test set as manually seg-
menting them for evaluation would be hardly feasible. Generating such slices that are
heavily affected by motion artifacts in fetal MRI could be an interesting direction for
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future work.
We have trained the proposedmethod with representative data, i.e. in a supervised

manner. Training with non-representative, in addition to the representative data, us-
ing transfer learning would allow increasing the training sample size. This could be
addressed in future work and it could potentially further improve segmentation per-
formance.

3.7 Conclusion
We presented an automatic method for brain tissue segmentation in fetal MRI into
seven tissue classes using convolutional neural networks. We demonstrated that the
proposed method learns to cope with intensity inhomogeneity artifacts by augment-
ing the training data with synthesized intensity inhomogeneity artifacts. This can
potentially replace or complement preprocessing steps, such as bias field corrections,
and help to substantially improve the segmentation performance.
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Figure 3.9: Performance of automatic fetal brain tissue segmentation into seven tissue classes
when the network is trained without any augmentation, with flipping slices as augmentation, with
flipping and rotating slices as augmentation, and with flipping, rotating and IIA. The results are
expressed as the mean Dice coefficient and the mean surface distance (MSD) in mm. Each marker
corresponds to the mean performance across all tissue classes in one of the six test scans.
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Figure 3.10: Performance of automatic fetal brain tissue segmentation for each of the seven tissue
classes when the network is trained without any augmentation, with flipping augmentation, with
flipping and rotating augmentation, andwith flipping, rotating and IIA. The results are expressed as
the mean Dice coefficient and the mean surface distance (MSD) in mm. Each marker corresponds
to the mean performance across all six test scans for one of the seven tissue classes.
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Figure 3.11: Performance of fetal brain tissue segmentation into seven tissue classeswith different
proportion of slices with synthetic intensity inhomogeneity in each training batch. The results are
expressed as the mean Dice coefficient (DC) and the mean surface distance (MSD) in mm. Each
marker corresponds to the mean performance across all six test scans for a different tissue class.
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Neonatal brain MRI With IIA Without IIA

Figure 3.12: Examples of brain tissue segmentation in neonatal MRI with intensity inhomogeneity
artifacts. A slice from T2-weighted fetal MRI scan (first column); segmentation obtained with net-
work using rotation, flipping and IIA (second column); segmentation obtained with network only
using flipping and rotation of the slices as training data augmentation (third column)
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Abstract
Automatic neonatal brain tissue segmentation in preterm born infants is a prerequisite
for evaluation of brain development. However, automatic segmentation is often ham-
pered by motion artifacts caused by infant head movements during image acquisition.
Methods have been developed to remove or minimize these artifacts during image re-
construction using frequency domain data. However, frequency domain might not
always be available. Hence, in this study we propose a method for removing motion
artifacts from the already reconstructed MR scans. The method employs a generative
adversarial network trained with a cycle consistency loss to transform slices affected
by motion into slices without motion artifacts, and vice versa. In the experiments 40
T2-weighted coronal MR scans of preterm born infants imaged at 30 weeks postmen-
strual age were used. All images contained slices affected by motion artifacts ham-
pering automatic tissue segmentation. To evaluate whether correction allows more
accurate image segmentation, the images were segmented into 8 tissue classes: cere-
bellum, myelinated white matter, basal ganglia and thalami, ventricular cerebrospinal
fluid, white matter, brain stem, cortical gray matter, and extracerebral cerebrospinal
fluid. Images corrected for motion and corresponding segmentations were qualita-
tively evaluated using 5-point Likert scale. Before the correction of motion artifacts,
median image quality and quality of corresponding automatic segmentations were
assigned grade 2 (poor) and 3 (moderate), respectively. After correction of motion
artifacts, both improved to grades 3 and 4, respectively. The results indicate that cor-
rection ofmotion artifacts in the image space using proposed approach allows accurate
segmentation of brain tissue classes in slices affected by motion artifacts.
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Figure 4.1: Examples of coronal slices from T2-weighted MRI acquired in preterm born infants at
30weeks postmenstrual age affected bymotion artifacts. Structures outside the neonatal cranium
have been masked out.

4.1 Introduction
Important brain development occurs in the last trimester of pregnancy including brain
growth, myelination, and cortical gyrification [1]. Magnetic resonance imaging (MRI)
is widely used to non-invasively assess and monitor brain development in preterm in-
fants. In spite of ability of MRI to visualize the neonatal brain, motion artifacts caused
by the head movement lead to blurry image slices or slices with stripes (see Figure 4.1).
These artifacts hamper image interpretation as well as brain tissue segmentation.

To enable the analysis of images affected by motion artifacts, most studies perform
the correction in the frequency domain (k-space) prior to analysis [81, 82]. However,
k-space is typically not stored and hence, not available after image reconstruction.
Recently, Duffy at al. [83] and Paware et al. [84] proposed to use convolutional neural
networks (CNNs) to correct motion-corrupted MRI from already reconstructed scans.
CNNs were trained to reconstruct simulated motion artifacts that were modelled with
a predefined formula. This enforces the network towards an assumed distribution of
artifacts. However, in practice, it is difficult to estimate the real distribution motion.
Alternatively, a CNN could be trained to generate an images without motion artifacts
from images with such artifacts. However, this would require training with paired
scans, which are rarely available. To solve this, recently cycleGAN has been proposed
to train CNNs for image-to-image transformation with unpaired images [85].

In this study, we propose to employ a cycleGAN to generate MR slices without
motion artifacts from slices affected by motion artifacts in a set of neonatal brain MR
scans. The cycleGAN transform slices affected by motion artifacts into slices without
artifacts, and vice versa. To demonstrate the effectiveness of the proposed method, we
applied the motion correction to motion affected slices and subsequently, we propose
to augment the segmentation training data from the cycleGAN that synthesizes slices
with artifacts from slices without the artifacts. We demonstrate that the proposed
correction for motion artifacts improves image quality and allows accurate automatic
segmentation of brain tissue classes in brain MRI of infants. We also show that the
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proposed data augmentation further improves segmentation results.

4.2 Data
This study includes 80 T2-weighted MRI scans of preterm born infants scanned at
average age 30.7 ± 1.0 weeks postmenstrual age (PMA). Images were acquired on a
Philips Achieva 3T scanner at University Medical Center Utrecht, the Netherlands.
The acquired voxel size was 0.34 × 0.34 mm2 and the reconstruction matrix was 384 ×
384 × 50. The scans were acquired in the coronal plane. In this data set, 60 scans had
visible motion artifacts in most of slices and 20 scans had no visible motion in any
slice. The reference segmentation of 10 scans out of 20 scans without motion artifacts
were available. The scans were manually segmented into 8 tissue classes: cerebellum
(CB), myelinated white matter (mWM), basal ganglia and thalami (BGT), ventricular
cerebrospinal fluid (vCSF), white matter (uWM), brain stem (BS), cortical gray matter
(cGM), and extracerebral cerebrospinal fluid (eCSF)

4.3 Method
Motion artifacts in the neonatal brain MR hamper the diagnostic interpretability and
precise automatic segmentation of the brain tissue classes. To address this, we propose
to correct motion artifacts in the reconstructed MR scans using a cycleGAN. There-
after, to evaluate whether the corrected images are suitable for segmentation of brain
tissues, a CNN architecture was trained to segment the brain into eight tissue classes.
Furthermore, to improve segmentation performance, we augment the training data by
synthesizing images with motion artifacts from the images without artifacts using the
cycleGAN.

4.3.1 Artifact correction network

CycleGAN has been proposed to train image-to-image translation CNNs with un-
paired images. Given that obtaining paired scans with and without motion artifacts
is difficult, cycleGAN was employed to transform slices affected by motion to slices
without motion artifacts and vice versa (Figure 4.2). The network architecture consists
of two cycles, motion correction and motion generation cycle. The motion correction
cycle consists of three networks. Motion correction network (MC) transforms slices af-
fected by motion to slices without motion artifacts. Motion generation network (MG)
reconstructs the generated slices without motion artifacts to the original image slices.
A discriminator CNN discriminates between generated and real slices without motion
artifacts DisMC. While the discriminator distinguishes between generated and real
slices without motion artifacts, the generator tries to prevent it by generating images
which are not distinguishable for the discriminator. Similarly, motion generation cycle
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Figure 4.2: The CycleGAN consists of two cycles: motion correction and motion generation. In
the motion correction cycle, first network is trained to transform slices affected by motion into
slices without motion artifacts (MC), the second network is trained to transform the generated
slices without motion artifact back to the original slices (MG), and the third network discriminates
between real and synthesized slices without motion artifacts (DisMC). In the motion generation
network, motion was added to the slices without motion artifacts (MG), motion correction network
transforms generated slices to the original slices (MC), and the discriminator network discriminates
between real and fake slices affected by motion artifacts (DisMG)

transforms slices without motion artifacts to slices affected by motion. The network
architecture in both cycles is identical. The generator contains 2 convolutions layers
with stride of 2, 9 residual blocks [86], and 2 fractionally strided convolutions with
stride proposed in [87]. The discriminator networks have a PatchGAN [88], which
classifies 70 × 70 overlapping image patches as fake or real. Two adversial losses
[89] were used in both motion correction network and motion generation network.
Furthermore, cycle consistency loss in motion correction network (MCcl) and motion
generation network (MGcl) were weighted by 𝜆 and were added to adversial losses.

4.3.2 Segmentation Network

To assess segmentation performance in images affected by motion artifacts, a CNN
with Unet-like architecture was trained to segment images into eight tissue classes.
The segmentation network consists of a contracting path and an expanding path. The
contracting path consists of 10 3×3 convolution layers followed by rectified linear units
(ReLUs). Every two conlution layers the features were downsampled by 2×2max pool-
ing and the feature channels were doubled in following scheme 32, 64, 128, 256, 512.
In the expanding path, an up-sampling is followed by a 2×2 convolution which halves
the number of feature channels. The results are concatenated with the corresponding
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contracting path and convolved by two 3 × 3 convolutional layers followed by a ReLU.
At the final layer, one 1 × 1 convolutional layer maps each component of the feature
vector to the desired number of classes. Batch normalization is applied after all con-
volutional layers to allow for faster convergence. The network was trained with 3D
patches of 256×256×3 voxels. The network was trained by minimizing the average of
Dice coefficient in all classes between the network output and manual segmentation.

4.4 Evaluation
To quantitatively evaluate the proposed method, motion is synthesized in images us-
ing the motion generation network. Thereafter, the performance of the segmentation
network was evaluated using the Dice coefficient (DC), Hausdorf distance (HD) and
mean surface distance (MSD) to evaluate between manual reference and automatically
obtained segmentations. The evaluation was performed in 3D.

To evaluate the proposed method on images with real motion artifacts, the images
and the corresponding automatic segmentations before and after motion correction
were qualitatively evaluated using 5-points Likert scale. The image quality was scored
on a scale from 1 to 5, where 1 indicates uninterpretable images with severe motion
artifacts, and 5 indicates excellent image quality. Similarly, automatic segmentations
were scored 1 when the segmentation failed and 5 when the segmentation was very
accurate.

4.5 Experiments and Results
Prior to analysis, the intracranial brain volume was extracted from all scans using
BET [23]. To train the artifact correction network 15 scans without motion artifacts
and 20 scans with motion artifacts were selected for training. The remaining 5 scans
withoutmotion artifacts and 40 scanswithmotion artifactswere used for testing. From
scanswithoutmotion artifacts, 700 slices with no visiblemotion artifacts were selected.
Similarly, from the scans with motion artifacts, 714 slices with visible motion artifacts
were selected. The network was trained with a batch size of 4. Adam [59] was used to
minimize the loss function for 100 epochs with a fixed learning rate of 0.00005. 𝜆 was
set to 10.

To segment the brain into eight tissue classes, the segmentation network was em-
ployed. The network was trained with 5 scans without motion artifacts selected from
the 15 training scans used to train the motion correction network. The segmentation
network was trained with a batch size of 6. Adam was used to minimize the loss func-
tion for 200 epoch and the learning rate was set to 0.0001.

In the experiments, we performed quantitative evaluation of the proposed method
through the evaluation of the brain tissue segmentation. First, to determine the up-
per limit of the segmentation performance, images without artifacts were segmented
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CB mWM BGT vCSF (u)WM BS cGM eCSF Mean

Original Scans
DC 0.90 0.53 0.89 0.84 0.94 0.84 0.67 0.83 0.80
HD 44.92 32.97 39.06 23.08 17.25 42.57 18.47 8.60 28.36
MSD 0.36 1.85 0.56 0.36 0.20 0.56 0.21 0.23 0.54

Motion Synthesized
DC 0.87 0.38 0.87 0.77 0.90 0.81 0.62 0.75 0.75
HD 52.27 53.80 42.93 33.70 21.33 48.18 21.53 22.43 37.02
MSD 0.62 4.10 1.04 1.32 0.77 0.92 0.55 1.00 1.29

Motion Corrected
DC 0.90 0.47 0.89 0.83 0.94 0.83 0.68 0.85 0.79
HD 45.06 41.93 33.58 22.84 18.25 39.19 18.57 8.90 28.54
MSD 0.46 2.07 0.55 0.35 0.20 0.41 0.21 0.16 0.55

Motion Augmented
DC 0.88 0.45 0.88 0.80 0.92 0.81 0.63 0.80 0.77
HD 40.19 27.42 28.43 19.27 14.98 30.85 15.03 11.79 23.49
MSD 0.46 1.84 0.61 0.39 0.27 0.48 0.27 0.24 0.57

Motion Corrected &
Augmented

DC 0.91 0.48 0.89 0.84 0.94 0.84 0.67 0.84 0.80
HD 45.62 34.52 26.83 17.77 14.40 35.93 17.18 7.63 24.99
MSD 0.45 1.89 0.44 0.29 0.19 0.42 0.20 0.17 0.51

Table 4.1: Performance of brain tissue segmentation into eight tissue classes. The evaluation of
segmentation was performed 1) on scans without motion artifact (original scans) 2) on the same
scans with synthesized motion using motion generation network (motion synthesized) 3) on the
scans that synthesizedmotionwere corrected usingmotion correction network (motion corrected).
The segmentation network was retrained with motion augmented scans using motion generation
network. The evaluation of segmentation was performed 4) on the scans with synthesized motion
using motion generation network (motion augmented) 5) on the scans that synthesized motion
were corrected using motion correction network (motion corrected and augmented)

(Table 4.1, top row). Second, we aimed to evaluate performance in the images with
artifacts. However, motion artifacts are prohibitive for accurate manual annotation
and manual annotations were not available for such images. Hence, the motion gen-
eration network was used to synthesized from the images without artifacts, for which
manual segmentations were available (Table 4.1, second row). Third, using motion
correction network, the artifacts were removed from the images with synthesized ar-
tifacts and those were subsequently segmented (Table 4.1, third row). In the previous
experiments, the segmentation network was trained only with images without motion
artifacts, as only those were manually labelled. However, we hypothesized that the
performance would improve when the segmentation would be trained with both types
of images. Hence, to obtain images affected by motion that can be used for training,
similar to the second experiment, we synthesized training images using motion gener-
ation network. In the fourth experiment, we evaluated segmentation network trained
with augmented training data, i.e. images with and without motion artifacts on im-
ages with synthesized motion artifacts (Table 4.1, fourth row). Finally, images with
synthesized artifacts were corrected as in the third experiment, and training data for
the segmentation was augmented as in the fourth experiment (Table 4.1, bottom row).
The results show that correction of motion artifacts using motion correction network
improves the performance (Table 4.1, second vs. third row). Moreover, results demon-
strate that the performance of the segmentation network improves when the training
data is augmented (Table 4.1, second row vs fourth row and third vs. bottom row).
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Figure 4.3: Examples of slices affected by motion artifacts and the corresponding tissue segmen-
tation in neonatal MRI. 1st column: A motion affected slice; 2nd column: Automatic segmentation
when the network was trained on slices without motion artifacts; 3rd column: Automatic segmen-
tation, network trained on slices with augmented motion; 4th column: A motion corrected slice;
5th column: Automatic segmentation result on the corrected slice; 6th column: Automatic seg-
mentation results on the corrected slice when the network was trained with data augmentation.

To qualitatively evaluate the performance of the motion correction network, 40
scans affected by motion artifacts were corrected using motion correction network.
Subsequently, the segmentation network trained with the proposed data augmenta-
tion was used to segment the corrected images. The image and segmentation qualita-
tive scoring before and after motion correction were performed. The median score of
image quality and segmentation quality after motion correction increased from grade
2 to grade 3 and from grade 3 to grade 4 respectively. Furthermore, the first interquar-
tile score of image quality and segmentation quality raised from 1 to 3 and 2 to 3
respectively. The third interquartile score of image quality and segmentation quality
raised from 3 to 4 and 3.5 to 4 respectively. Figure 4.3 shows examples of images and
corresponding segmentations before and after motion correction. This shows that the
motion correction network reduces motion artifacts and hence, improves quality of
the images and corresponding segmentations. Moreover, the figure shows that our
proposed motion augmentation further improves automatic segmentations.

4.6 Discussion and conclusion
We presented a method to correct for correction of motion artifacts in reconstructed
brain MR scans of preterm infants using a cycleGAN. We demonstrate that the pro-
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posed artifact correction generates images that are more suitable for (automatic) im-
age segmentation, the images were subsequently segmented into eight tissue classes.
Additionally, we show that training the segmentation network with the proposed data
augmentation further improves segmentation performance.

Unlike previous methods that performed motion correction in the frequency do-
main (k-space), the proposedmethod correctsmotion artifacts in already reconstructed
scans. Given that k-space is often not available after scans have been reconstructed
and stored, the proposed method allows correction.

Quantitative results show that correction of motion artifacts and training the seg-
mentation network with augmented data achieved best results. Furthermore, the qual-
itative evaluation shows that the proposed method improves image quality and seg-
mentation in scans affected by motion.
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Abstract
BACKGROUNDANDPURPOSE: Fetuses and neonateswith critical congenital heart
disease are at risk of delayed brain development and neurodevelopmental impairments.
Our aim was to investigate the association between fetal and neonatal brain volumes
and neonatal brain injury in a longitudinally scanned cohort with an antenatal diag-
nosis of critical congenital heart disease and to relate fetal andneonatal brain volumes
to postmenstrual age and type of congenital heart disease.

MATERIALSANDMETHODS: This was a prospective, longitudinal study including
61 neonates with critical congenital heart disease undergoing surgery with cardiopul-
monary bypass<30 days after birth andMR imaging of the brain; antenatally (33 weeks
postmenstrualage), neonatal preoperatively (first week), and postoperatively (7 days
postoperatively). Twenty-six had 3 MR imaging scans; 61 had at least1 fetal and/or
neonatal MR imaging scan. Volumes (cubic centimeters) were calculated for total
brain volume, unmyelinated white matter,cortical gray matter, cerebellum, extracere-
bral CSF, and ventricular CSF. MR images were reviewed for ischemic brain injury.

RESULTS: Total fetal brain volume, cortical gray matter, and unmyelinated white
matter positively correlated with preoperative neonatal total brain volume, cortical
gray matter, and unmyelinated white matter (r = 0.5–0.58); fetal ventricular CSF and
extracerebral CSF correlated with neonatal ventricular CSF and extracerebral CSF (r
= 0.64 and 0.82). Fetal cortical gray matter, unmyelinated white matter, and the cere-
bellum were negatively correlated with neonatal ischemic injury (r = –0.46 to –0.41);
fetal extracerebral CSF and ventricular CSF were positively correlated with neonatal
ischemic injury (r = 0.40 and 0.23).Unmyelinated white matter:total brain volume ra-
tio decreased with increasing post-menstrual age, with a parallel increase of cortical
gray matter:total brain volume and cerebellum:total brain volume. Fetal ventricular
CSF:intracranial volume and extracerebral CSF:intracranial volume ratios decreased
with increasing postmenstrual age; however,neonatal ventricular CSF:intracranial vol-
ume and extracerebral CSF:intracranial volume ratios increased with postmenstrual
age.

CONCLUSIONS: This study reveals that fetal brain volumes relate to neonatal brain
volumes in critical congenital heart disease, with anegative correlation between fetal
brain volumes and neonatal ischemic injury. Fetal brain imaging has the potential to
provide early neurologic biomarkers.
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5.1 Introduction
Preoperative and postoperative ischemic brain injury is prevalent in neonates with
critical congenital heart disease (CHD) undergoing open-heart surgery with the use of
cardiopulmonary bypass, with an incidence over 50%.[90] White matter injury (WMI)
and stroke are the most common types of ischemic brain injury, and especially WMI
acquired in the neonatal period is associated with neurodevelopmental disabilities
throughout school-age.[91, 92] In addition, delayed brain growth with suggested an-
tenatal onset has been reported in individuals with critical CHD.[93, 94]

Antenatal studies have shown fetuses with critical CHD to demonstrate progres-
sively reduced brain growth when compared to healthy fetuses.[95] Smaller brain
volumes in fetuses with critical CHD are thought to be the result of reduced ante-
natal cerebral oxygen delivery and cerebral oxygen consumption, a consequence of
the anatomical changes by the cardiac defect.[94, 96, 97] The extent in which delayed
fetal brain growth is transient or persists in the neonatal period remains undescribed.
Revealing the association between fetal and neonatal delayed brain growth and ac-
quired brain injury provides important information for the potential use of fetal brain
imaging as an early biomarker of brain abnormalities and the future implementation
of interventions improving brain growth.

Using a prospective longitudinal design, we investigated the correlation between
fetal brain and CSF volumes and neonatal (preoperative and postoperative) brain and
CSF volumes and acquired neonatal (preoperative or postoperative) ischemic brain
injury using MRI. Our secondary aim was to examine trajectories of brain and CSF
volumes in relation to postmenstrual age (PMA) over the third trimester of gestation
and first weeks after birth.

Figure 5.1: Fetal and neonatal brain tissue segmentation. Coronal T2-weighted segmented fetal
and neonatal image of the same individual with transposition of the great arteries at 30 weeks of
gestation and before the operation.

5.2 Materials and Methods
This was a prospective, longitudinal cohort study.



80 Chapter 5

5.2.1 Study population

Between May 2016 and December 2017, fetuses with an antenatal diagnosis of critical
CHD requiring open heart surgery with the use of cardiopulmonary bypass at 30 days
of life and referred to the Wilhelmina Children’s Hospital Utrecht, a tertiary level
hospital, underwent longitudinal MR imaging of the brain at 3 time points, antenatally
(around 33 weeks PMA), neonatal preoperatively (within the first week of life), and
neonatal postoperatively (around 7 days after the operation; range, 5–10 days). For
this study, we excluded individuals with a genetic syndrome confirmed by antenatal
karyotype or microarray (such as trisomy 21 or 22q11 deletion) or cerebral congenital
malformations (such as corpus callosum agenesis). The local medical ethics board
approved the study, and parental informed consent for the use of clinical data for
research purposes was obtained.

5.2.2 MR Imaging Acquisition

Fetal MRI was performed in the third trimester of gestation, around 33 weeks PMA
(range 29-35 weeks). All fetuses were scanned in a 3.0 T MR system (Philips Medical
Systems, Best, Netherlands). Mothers were positioned comfortably in the MR scan-
ner and no sedation was given. The following sequences were used for this study:
T2 weighted imaging in all three directions (TE/TR=180/55860ms, FOV=360x360, slice
thickness=2mm), axial snap inversion recovery and axial diffusion weighted imaging.
Neonatal MRI acquisition All fetuses and neonates were scanned on a 3T MR imag-
ing system (Achieva, Philips Healthcare, Best, the Netherlands). Fetal and neonatal
MR images were reviewed by 2 independent researchers for the presence of congeni-
tal anomalies, parenchymal hemorrhage, ischemic brain injury, and ventriculomegaly
(atrial diameter, 10 mm).[98, 99] Details are provided in the On-line Appendix.

5.2.3 Quantitative 3D volumetric analysis

Fetal and neonatal coronal T2-weighted images were automatically segmented into
different tissue classes: extracerebral CSF (ECSF), ventricular CSF (VCSF), unmyeli-
nated white matter (UWM), cortical gray matter (CGM), cerebellum, basal ganglia and
thalamus, brain stem, and myelinated white matter (5.1), using a further adjusted ap-
proach for neonatal MR images.[13] Volumes were calculated for all 8 tissue classes.
All segmentations were manually checked for quality; no manual adjustments to the
segmentations were made. Because basal ganglia, brain stem, and myelinated white
matter were difficult to distinguish reliably on fetal T2-weighted images, these tissues
were not taken into account for this study. Intracranial volume (ICV) was calculated
as the sum of all 8 tissues classes; total brain volume (TBV), as the sum of UWM, CGM,
cerebellum, basal ganglia and thalamus, brain stem, and myelinated white matter.
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5.2.4 Statistical analysis

For statistical analysis, R statistical and computing software, Version 3.5.0 (http://www.r-
project.org/) was used. Clinical variableswere predominantly not normally distributed;
therefore, nonparametric tests were performed and medians (25th/75th centiles) were
presented for continuous data. Counts (percentage) were presented for categoric data.
To test the differences in baseline characteristics between individuals with and with-
out fetal MR imaging, we used Mann-Whitney U and Fisher exact tests. Univariable
linear and nonlinear quadratic regression analysis was performed to examine the as-
sociation between fetal brain and CSF volumes and neonatal (preoperative and post-
operative) brain, and between CSF volumes and acquired neonatal brain injury, with
correction for PMA at the time of scanning. Correlation coefficients with 95% confi-
dence intervals were presented. Mixed-model analysis (R, nlme package 3.1–137) was
performed to test the difference in brain and CSF volumes between different types
of CHDs (fixed effect), including PMA (fixed effect), with the brain or CSF volume
as dependent factors and individual subjects as random factors. A P value .007 was
considered significant with correction for multiple comparisons.

5.3 Results

5.3.1 Study population

In the study period, 71 neonates with an antenatal diagnosis of critical CHDwere born,
of whom 8 died without any MR imaging of the brain. Sixty-three neonates with an
antenatal diagnosis of critical CHD had cardiac surgery within 30 days after birth, of
whom, 2 were excluded because of a genetic syndrome, leaving 61 neonates eligible
for this study. Thirty-one neonates underwent all 3 MR imaging scans;however, 5 had
poor fetal imaging quality, leaving 26 with all 3 MR imaging scans for the primary
study aim. All 61 neonates were included for the secondary study aim:26plus an ad-
ditional 21 with 2 MR imaging scans and 14 with 1 MR imaging scan (flowchart in
On-line Figure). Baseline characteristics are presented in 5.1.

5.3.2 Fetal and Neonatal MR Imaging: Conventional Analysis

Two fetuses showed unilateral ventriculomegaly (atrial diameter, 10–15 mm). None of
the fetuses showed parenchymal hemorrhage or ischemic brain injury.

At preoperative neonatal MR imaging, focal infarction was seen in 2 (8%) and WM
injury (WMI) in 2 (8%). Punctate cerebellar hemorrhage was seen in 1 (4%). Cumula-
tively (at preoperative and post operative MR imaging),focal in farction was present
in 7 (28%) and WMI in 9 (38%). Hypoxic-ischemic watershed injury was not seen in
any neonates.
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Characteristics

Maternal characteristics(n = 29; fetal MRI)

Maternal age (yr) 30.5 (27.8/35.3)

Maternal body mass index 22.8 (20.8/23.9)

Maternal smoking 3 (12%)

Placental weight (g) 455 (375/510)

Patient characteristics (n = 61; totalstudy population)

Female 18 (30)

CHD groups

SVP 21 (34)

TGA 18 (30)

LVOTO 22 (36)

Antenatal CHD diagnosis 61 (100)

Twin 1 (2)

Genetic disorder 0 (0)

Additional congenital anomaly 3 (5)

Gestational age (wk) 39.1 (38.4/40.1)

Birth weight (g) 3320 (2970/3670)

Birth weight (zscore) -0.4 (-0.8/0.3)

Cesarean delivery1 8 (31)

Neonatal death 6 (10)

MRI characteristics

Fetal, PMA (wks) 33.4 (32.7/34.1)

Preoperative, days after birth 5 (3/6)

Preoperative, PMA (wks) 40.1 (39.1/41.0)

Postoperative, days after surgery 8 (7/9)

Postoperative, PMA (wks) 42.0 (40.6/43.0)

Table 5.1: Baseline and MRI characteristics of the study population. Median with interquartile
range or number with percentage are shown. No significant differences were seen between the
primary and secondary study population.



Brain and CSF volumes in fetuses and neonates with CHD 83

Neonatal
Preoperative
volume

Postoperative
volume

Ischemic brain
injury

Fetal volumes TBV* ● ● ○
UWM* ● □
CGM* ● ■ □
CB* ■ □
UWM:TBV† ● ■
CGM:TBV† ■
CB:TBV† ● ● ■
TBV:ICV† ● ■
VCSF† ●
ECSF† ● ● ■
VCSF:ICV† ■ ●
ECSF:ICV† ● ■

■Moderate correlation (closed square r = 0.3 to 0.5; open square r = -0.5 to -0.3)

● Strong correlation (closed circle r = 0.5 to 0.8; open circle r= -0.8 to -0.5)

Table 5.2: Association between fetal and neonatal MRI. Strength of correlation of fetal and neona-
tal preoperative volumes (first column); fetal and postoperative neonatal volumes (second col-
umn); fetal volumes and neonatal ischemic brain injury (third column). *Result of linear regression
analysis with correction for postmenstrual age at scan. †Result of quadratic regression analysis.
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5.3.3 Fetal Brain and CSF Volumes: Clinical Factors

Fetal UWM was positively associated with fetal CGM (r 0.87); fetal UWM, with fetal
cerebellum (r 0.60); and fetal CGM, with fetal cerebellum (r 0.56). Fetal UWM:TBV
(proportion of TBV occupied by UWM) was negatively associated with fetal CGM:
TBV (r 0.51). Fetal VCSF and ECSF were negatively associated with fetal UWM:TBV
(r0.39 and 0.53, respectively).

Fetal brain and CSF volumes (corrected for PMA at scanning) were not associated
with maternal body mass index, maternal age, maternal smoking, placental weight, or
birth weight z score (all P values .007 with Bonferroni correction for multiple com-
parisons). None of the mothers of the primary study population had preeclampsia or
gestational diabetes.

5.3.4 Brain and CSF Volumes: Correlation between Fetal andNeonatalMR
Imaging

Fetal volumes of CGM, UWM, and TBV correlatedwith preoperative neonatal volumes
of CGM, UWM, and TBV, respectively(5.2). Postoperatively, the association of fetal
CGM and TBV with neonatal CGM and TBV, respectively, was still seen. Fetal VCSF,
ECSF, VCSF: ICV, and ECSF:ICV correlated with preoperative neonatal VCSF, ECSF,
VCSF:ICV, and ECSF:ICV, respectively. Postoperatively, the associations between fetal
and neonatal MR imaging were still seen for ECSF and VCSF: ICV (5.2 and On-line
Table).

5.3.5 Fetal Brain and CSF Volumes: Correlation with Neonatal Ischemic
Brain Injury

Baseline characteristics were not different between neonates with and without is-
chemic brain injury (data not shown). Both fetuses with antenatal ventriculomegaly
had moderate-severe WMI before the operation (100%).

The fetal TBV, CGM, UWM, and cerebellum were negatively associated with the
presence of neonatal (either preoperatively or postoperatively acquired) ischemic brain
injury (5.2), inwhich fetal ECSFwas positively associatedwith neonatal ischemic brain
injury. The rate of preoperative ischemic brain injury was low and consequently was
not examined separately in relation to fetal brain and CSF volumes.

5.3.6 Fetal and Neonatal MRI: brain volumes, PMA and type of CHD

For the secondary study aim, the total study population of 61 subjects was analyzed.
ICV, TBV, UWM, CGM, and the cerebellum all showed a linear association with PMA
(5.2). The proportion of TBV occupied by UWM decreased with time, with a paral-
lel increase of occupation of the TBV by CGM and the cerebellum. The proportions
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of VCSF: ICV and ECSF:ICV decreased during the fetal period with increasing PMA;
however, it increased again in the neonatal period (5.3).

By means of mixed-model analysis, no differences in brain or CSF volumes were
seen among CHD groups (all F-test P values .007, with correction for multiple compar-
isons).

Figure 5.2: Fetal and neonatal brain volumes in relation to postmenstrual age. Plotted are brain
volumes (y-axis) in relation to postmenstrual age atscanning (x-axis) for transposition of the great
arteries (pink diamonds), left ventricle outflow tract obstruction (green circles), and single-ventricle
physiology (black squares).Either the regression or quadratic line was fitted for each congenital
heart defect separately (dotted lines),also as 1 line combining all subjects (solid black line). R2

values reflecting the goodness of fit: ICV, 0.76; TBV, 0.76; UWM, 0.53; CGM, 0.81; cerebellum, 0.79;
CGM:TBV, 0.78; UWM:TBV, 0.77; cerebellum:TBV, 0.48.
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5.4 Discussion

Previous studies have reported smaller brain volumes in fetuses and neonates with
critical CHD compared with healthy subjects. Linking longitudinal fetal and neonatal
brain and CSF volumes, for the first time, this study reveals the strong relationship
between brain volumes and postmenstrual age in individuals with critical CHD. Ad-
ditionally,the results show a negative correlation between fetal brain volumes and
neonatal ischemic brain injury. Revealing the association between fetal brain imag-

Figure 5.3: Fetal and neonatal CSF volumes in relation to postmenstrual age. Plotted are CSF
volumes (y-axis) in relation to postmenstrual age atscanning (x-axis) for transposition of the great
arteries (pink diamonds), left ventricle outflow tract obstruction (green circles), and single-ventricle
physiology (black squares). Either the regression or quadratic line was fitted separately for each
congenital heart defect (dotted lines),also as 1 line for all subjects (solid black line). R2 values
reflecting the goodness of fit: VCSF, 0.27; ECSF, 0.27; VCSF:ICV, 0.14; ECSF:ICV, 0.24.

ing parameters and neonatal brain abnormalities provides important information for
the potential use of fetal brain imaging parameters to estimate neonatal neurologic
findings in critical CHD.

In neonates with critical CHD, volumes of the largest brain structures occupying
most of the total brain volume, ie, UWM, CGM, and cerebellum, correlated with the
volumes measured in the same individuals around 33 weeks of gestation. The findings
of this study support the hypothesis that neonatal brain volumes are the result of an-
tenatal brain growth and strengthen the possibility of detecting delayed brain growth
at an early stage, even before birth. Inourstudy, the association of fetal UWM and
CGM was stronger with preoperative neonatal UWM and CGM than with postopera-
tive UWM and CGM. This finding suggests that growth of UWM and CGM after birth
is dependent on other neonatal factors than antenatal brain growth alone.
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In our study, the association between fetal and neonatal age was less strong for
the cerebellum than it was for UWM and CGM. However, the proportion of fetal TBV
occupied by the cerebellum was strongly associated with the proportion of preoper-
ative and postoperative neonatal TBV occupied by the cerebellum. The cerebellum
is the brain structure with the highest increase in volume between 30 and 40 weeks
PMA in extremely preterm infants.[100] Previous studies have shown that in the third
trimester of gestational age, cerebellar volume was comparable between fetuses with
and without CHD[101, 102] whereas at term age, a reduction of 20% in the cerebellum
has been observed in neonates with critical CHD.[93]

Together with the relative reduction in brain volumes with increasing gestation, a
relative increase in CSF spaces has been described in fetuses with critical CHD com-
paredwith healthy fetuses.[95] Larger CSF spaces are seen as an expression of brain im-
maturity.[103] In healthy fetuses,CSF volumes plateaulate in the third trimester,[104]
and the proportion of ICV occupied by CSF decreases during the third trimester from
0.4 to 0.1.6 In our study, the proportion of ICV occupied by VCSF and ECSF was higher
than 0.1 throughout the antenatal and neonatal period for all neonates with critical
CHD. Absolute and proportional CSF volumes did decrease during the third trimester
of gestation, to increase again in the neonatal period. In addition, the findings of our
study revealed that increased absolute and proportional CSF volumes at fetal age did
correlate with increased neonatal CSF volumes. This increase in CSF spaces seems ab-
normal and might be a sign of further brain underdevelopment or the result of brain
tissue loss. Studies in older children with single-ventricle physiology have shown an
association between larger CSF spaces and poorer neurodevelopment.[105]

Although it is becoming well-established that WM, CGM, and cerebellar volumes
are smaller in fetuses and neonates with various types of critical CHD compared with
healthy controls,[19, 93, 95, 101, 102, 106] the contribution of these findings to neu-
rodevelopment later in childhood remains largely unknown. Smaller neonatal brain
volumes are associated with abnormal neonatal neurobehavior [107] and lower 6-
year intelligence in children with critical CHD.[92] In adolescents with critical CHD,
decreased TBV is strongly correlated with poorer cognitive and executive function-
ing.[108]

In our study, ischemic and hemorrhagic brain injury was not seen in any of the
fetuses. This finding supports the common thought that acquired brain injury has its
onset after birth, in the neonatal intensive care and surgical period. The rate of pre-
operative and new postoperative neonatal ischemic injury in our population is com-
parable with that in previous reports.[90] All individuals included in this study had
antenatal CHD diagnosis, which has been suggested as a protective factor for preop-
erative neonatal ischemic brain injury.[91] In neonates with critical CHD, WMI and
focal infarction are the most common forms of acquired brain injury, and especially
WMI has been shown to be associated with poorer motor and cognitive outcomes in
the long term.[91, 92]
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The results of this study revealed a correlation of smaller fetal TBV, UWM, CGM,
and cerebellum with acquired neonatal ischemic brain injury (ie, moderate-severe
WMI or focal infarction) in neonates with an antenatal diagnosis of critical CHD. Ab-
solute fetal volumes of UWM, CGM, and the cerebellum (corrected for PMA) showed
a stronger correlation with acquired neonatal brain injury than the proportion of TBV
occupied by any of these brain structures. Previous studies have also suggested a link
between neonatal brain underdevelopment and acquired neonatal brain injury.[109,
110] However, our study cannot reveal whether there is a causal relationship between
smaller brain volumes and acquired brain injury. Brain underdevelopment might be
accompanied by an increased vulnerability of the brain to disturbances in cerebral
blood flow and cerebral oxygen delivery during intensive care admission and cardiac
surgery.

All critical CHD groups have reduced oxygen delivery compared with healthy con-
trols, and this reduction in brain oxygen delivery is directly associated with smaller
fetal and neonatal brain volumes.[94, 96] Oxygen delivery is dependent on cerebral
blood flow and blood oxygen content. As a result of the cardiac defect, cerebral blood
flow is most severely altered in single-ventricle physiology and left-ventricle outflow
tract obstruction, whereas cerebral blood oxygen content is lowest in transposition
of the great arteries.[111] Despite these differences in antenatal cerebral circulatory
disturbances, we found no differences in growth trajectories of brain volumes among
these CHD groups, reflecting most critical cardiac defects. Smaller fetal TBV[95] and
lower neonatal brain growth rate[112] have been described in single-ventricle physiol-
ogy compared with other cardiac defects; however, most neonatal studies have shown
comparable reductions in the volumes of UWM and CGM among transposition of the
great arteries and single-ventricle physiology.[19, 93] All individuals with critical CHD
are at risk of reduced antenatal brain growth; however, other patient-related factors
than the cardiac defect itself might determine the degree of brain underdevelopment.

This study is one of the first to explore the correlation between fetal and neonatal
brain volumes using quantitative longitudinalMR imaging. This study provides impor-
tant information for future research investigating whether there is a causal relation-
ship between brain underdevelopment and brain injury, fetal brain underdevelopment
as an early biomarker for neurodevelopmental outcomes, and potential strategies to
improve antenatal brain growth.

This study has several limitations. First, postnatal CHDdiagnosis increases the risk
of preoperatively acquired ischemic brain injury, especially when low cardiac output
syndrome is present. However, this population cannot be included in fetal MR imag-
ing studies and was therefore not examined in this study. Second, absolute brain and
CSF volumes are dependent on the MR imaging protocol and postimaging processing
methods and are therefore difficult to compare among studies. Third, the subgroup
sample size (by heterogeneity of CHD populations) limited the possibility of perform-
ing subgroup analysis. The subgroup analysis of fetal-neonatal brain volumes by PMA
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is at risk of type 2 errors, potentially not showing differences among the groups.

5.5 Conclusions
Linking longitudinal fetal and neonatal brain and CSF volumes,this study reveals the
strong relationship between brain volumesover postmenstrual age in individuals with
critical CHD. Addi-tionally, the results show a negative correlation between fetalbrain
volumes and neonatal ischemic brain injury. Combiningthese findings, this study sug-
gests that fetal MR imaging can beused as an early biomarker to estimate neonatal
neurologic find-ings in critical CHD.
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Abstract
Objective: To compare the effect of early and late intervention for posthemorrhagic
ventricular dilatation (PHVD) on additional brain injury and ventricular volume using
term-equivalent age magnetic resonance imaging (TEA-MRI).
Study Design: In the ELVIS (Early versus Late Ventricular Intervention Study) trial
126 preterm infants ≤34 weeks gestation with PHVD were randomised to low thresh-
old (LT, ventricular index (VI) > p97 and anterior horn width (AHW) > 6mm) or higher
threshold (HT, VI > p97 + 4mm and AHW > 10mm). In 88 (80%) with a TEA-MRI, the
Kidokoro Global Brain Abnormality Score and the frontal and occipital horn (FOH)
ratio were measured. Automatic segmentation was used for volumetric analysis.
Results: TEA-MRI was obtained in 44 in the LT group and 44 in the HT group. The
total Kidokoro score of the infants in the LT group was lower than in the HT group
(median (interquartile range): 8 (5-12) vs 12 (9-17), respectively; p<0.001). There were
more infants in the LT group with a normal or mildly increased score versus more in-
fants in the HT group with a moderately or severely increased score (46% vs. 11% and
89% vs. 54%, respectively; p=0.002). The FOH ratio was lower in the LT group (0.42
(0.34-0.63) vs 0.48 (0.37-0.68), respectively; p=0.001). Ventricular CSF volumes could
be calculated in 47 infants and were smaller in the LT group (p = 0.03).
Conclusion: Our findings demonstrate more brain injury and larger ventricular vol-
umes in the HT group. These results support the positive effects of early intervention
for PHVD.
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6.1 Introduction

Over the past decades, substantial developments in obstetric and neonatal care have
resulted in a significant increase in the survival of premature infants. Along with
mortality, a further aim has been to reduce the major morbidities and improve neu-
rodevelopmental outcome. However, due to the increased survival rate of extremely
preterm infants, germinal matrix-intraventricular hemorrhage (GMH-IVH) continues
to be a serious complication of preterm birth [113, 114]. Posthemorrhagic ventricular
dilatation (PHVD) occurs in approximately 30-50% of the preterm infants after a severe
hemorrhage and increases the risk of neurocognitive and motor impairments [4]. Ad-
verse effects of PHVD on the developing newborn brain include white matter injury
and decreased volumes of deep gray matter and cerebellum, indicating the importance
of timely intervention to restrict these problems as much as possible [55]. After the
use of temporizing methods, overall conversion to a permanent shunt varies from 20-
65% depending on the time of onset of the intervention [115]. Given the high rates of
infection, dysfunction and life-long dependence after ventriculoperitoneal (VP)-shunt
insertion, it would be beneficial if a treatment could reduce the risk of shunt require-
ment [116, 117]. Removing the hemorrhagic cerebrospinal fluid (CSF) by lumbar punc-
tures or taps from a ventricular reservoir may reduce the need for VP-shunt placement,
since removal of CSF that contains blood components, protein, and cytokines might
re-establish normal CSF circulation [118]. Although optimum timing of intervention
continues to be a matter of debate in the neonatal literature, there is accumulating evi-
dence showing the beneficial effects of early intervention on ventricular dilatation and
outcomes [119, 120]. In a recent randomized controlled trial (the ELVIS, Early versus
Late Ventricular Intervention Study) no significant difference was found for the need
for VP-shunt in those treated before or after crossing the 97th centile +4 mm line of the
graph of Levene [121]. However, only a small number of infants in both study arms
had a VP-shunt inserted, the lowest number reported in the literature so far (19-23%)
[115]. The aim of the present nested substudy was to compare the extent of injury in
different brain regions, and brain volumes on term-equivalent age magnetic resonance
imaging (TEA-MRI) in patients randomized to the early or late intervention group.

6.2 Patients and Methods

6.2.1 Patients

A total of 126 infants participated in the ELVIS trial, a RCT conducted between 2006
and 2016 to compare the effects of low versus high threshold treatment in preterm
infants of ≤34 weeks’ gestational age with progressive PHVD. Infants were eligible
for the RCT when they had an IVH grade III, with or without a periventricular hem-
orrhagic infarct (PVHI) according to Volpe [122]. They were randomly allocated to
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either low threshold (LT) group (intervention when an increase in ventricular width
according to Levene [121] above the p97 line showing an increase towards the p97 +
4mm line but without crossing the p97 + 4mm line, and an increase in diagonal ante-
rior horn width according to Davies et al. [123] above 6 mm towards 10 mm, but not
above 10 mm) or high threshold (HT) group (intervention once the ventricular width
crossed the p97 + 4mm line and the anterior horn width was above 10 mm). Antena-
tal and perinatal factors including gestational age, birth weight, sex, the severity of
hemorrhage, and timing and type of intervention, and postmenstrual age at MRI day
were collected for each patient from the patient files and/or hospital database. Ap-
proval from the Research Ethics Boards at each center and informed written parental
consent were obtained for all of the patients and for the control infants participating
in the study before enrollment into the study.

6.2.2 MRI Acquisition
In all centers MR images were acquired around TEA. A 3.0 Tesla MR system (Philips
Healthcare, Best, The Netherlands) using a sense head coil was available at three cen-
ters (University Medical Center Utrecht (UMCU), University Medical Center Leiden
and Isala Hospital, Zwolle) and from 2014 onwards at Southmead Hospital, Bristol.
Until April 2014, a 1.5-Tesla MR system (GE Signa Excite HD system, USA) was used
in Bristol. University Medical Center Groningen (SonataVision, Siemens, Germany),
University Hospital Puerta del Mar, Cadiz (Magnetom Symphony, Siemens, Germany),
Radboud University Nijmegen Medical Centre (Magnetom Symphony, Siemens, Ger-
many), University of Rotterdam (GE Signa Excite HD system, USA) and University of
Lisbon (Philips Healthcare, Best, The Netherlands) used a 1.5 TeslaMR system. All par-
ticipating centers used conventional axial 3D T1-weighted imaging and T2-weighted
imaging and followed a predefined MRI protocol according to their institutional guide-
lines during the study period. Only the high-quality images that were suitable for
scoring and volumetric measurements were included in the study.

6.2.3 Assessment of Brain Injury
An investigatorwithmore than 20 years of experience in reading neonatalMRIs (LSdV)
who was blinded to the infant’s clinical information, and the allocated arm of the
RCT, assessed the images. Ventricular measurements (ventricular index (VI) and an-
terior horn width (AHW)) were performed as described by Levene [121] and Davies
et al [123]. The frontal and occipital horn (FOH) ratio was obtained by measuring the
widest distances across the frontal horns and the occipital horns, and the average of
these measurements was then divided by the largest biparietal diameter as defined by
Kulkarni et al. [124]. To evaluate the intraobserver reliability of the measurements,
15 studies from 15 random patients were assessed and the intra-class correlation co-
efficient (ICC) was calculated. For the assessment of brain injury, a validated scoring
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system for evaluating cerebral white matter (WM), cortical gray matter (GM), basal
ganglia and thalami (BGT), and cerebellum abnormalities was used. The measure-
ments were corrected for postmenstrual age, and a global brain abnormality score
was calculated as the sum of the regional total scores and classified as normal (total
score 0-3), mild (total score 4-7), moderate (total score 8-11) and severe (total score 12
or more), as defined by Kidokoro et al. [11].

6.2.4 Assessment of Brain Volumes

Automatic segmentation of cerebral MRIs was applied on axial or coronal T2-weighted
images for computerized volume analysis. The images were segmented into 8 regions:
cerebellum, myelinated white matter (mWM), BGT, ventricular cerebrospinal fluid
(vCSF), unmyelinated WM, brain stem, cortical GM, and extracerebral cerebrospinal
fluid (eCSF), as described by Moeskops et al. [13]. Quality of automatic segmentations
was established by visual evaluation. Images with low-quality segmentations were
excluded from further analysis, and high-quality images were manually edited when
deemed necessary prior to further analysis. Subsequently, volumetric measurements
of the segmented tissues were obtained by multiplying the number of segmented vox-
els per tissue by the voxel size. Thereafter, contours were drawn around the struc-
ture of interest on consecutive slices through the brain. Both porencephalic cysts and
cysts following PVHI but not communicating with the lateral ventricles were included
in ventricular volume measurements. The relative volumes of the brain regions were
calculated by dividing the volume of the area of interest by total intracranial volume,
which includes brain tissues and ventricular and extra-ventricular CSF spaces (Figure
6.1).

6.2.5 Statistical Analysis

Statistical analyses of the data were performed using the Statistical Package for the So-
cial Sciences v21.0 program (SPSS Inc., Chicago, Ill., USA). The continuous variables
were presented as mean ± standard deviation (SD) and median (interquartile range,
IQR) depending on their distribution. The categorical values were presented as fre-
quency and percentage. Fisher’s exact and Chi-squared tests were used to compare
categorical variables among groups. Mann-Whitney U test was used to compare non-
parametric variables and student t-test was used for the comparison of variables that
showed normal distribution. Logarithmic transformation was used to obtain a Gaus-
sian distribution of the non-normally distributed volumetric measurements. Observed
associations controlled for the grade of IVH by using multiple regression. To evaluate
the reliability of measurements, intra-class correlation coefficient was calculated and
classified as good for 0.8<ICC<0.9 and excellent for ICC>0.9. Statistical significance
was set at p < 0.05.
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Figure 6.1: T2-weighted coronal MRIs obtained at TEA show A, mildly enlarged ventricular CSF
volumes in a preterm infant in the low-threshold group, B, the same infant after automatic seg-
mentation of the MRI into 8 regions for volumetric analysis, C, severely enlarged ventricular CSF
volumes in a preterm infant in the high-threshold group, D, automatic segmentation of the image
in C.
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Figure 6.2: Flowchart of patient allocation and subsequent MRI assessments at TEA.

6.3 Results

6.3.1 Study Population

During the 10-year study period, 126 infants were enrolled into the ELVIS cohort of
whom 38were not eligible for inclusion in the present study. Of these ineligible infants,
MRI was not available due to death in 16 and was not performed around TEA in 22
infants. The main reasons for not obtaining anMRI were transfer back to the referring
hospital where no MR device was present, and not being able to transfer the infant
again to the study site exclusively for imaging reasons at term-equivalent age (n = 17).
Two had a very early MRI only and two had an MRI well beyond the neonatal period,
and one had an MRI in a level 2 hospital with insufficient quality. This resulted in a
final sample of 88 infants being enrolled in the study. Of these infants, 44 were in the
LT group and 44 were in the HT group (Figure 6.2 online). No statistically significant
differences between the LT and HT groups were observed in terms of gestational age,
sex, birth weight and postmenstrual age at the time of MRI. Infants who were not
included in the present study due to not having MRI were similar to those included
with respect to demographic and clinical variables. Characteristics of the participants
in whom MRI was completed are presented in 6.1.
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6.3.2 Frontal and Occipital Horn Ratio and Kidokoro Score

The intra-observer reliability showed an excellent correlation for the measurements
(ICC = 0.94). Median ventricular measurements, including VI and AHW (p < 0.001
for both), and the FOH ratio were lower in the LT group (p = 0.001). The total Ki-
dokoro score of the infants in the LT group was also lower than that of the HT group
(p < 0.001). The subgroup analyses were performed after excluding infants with PVHI.
Data regarding these measurements and comparisons are presented in 6.1. When the
groups were compared in terms of severity of the Kidokoro score, there were more in-
fants in the LT group with a normal or mildly increased score and more infants in the
HT group with a moderately or severely increased score (p = 0.002). Observed asso-
ciations persisted after controlling for the grade of IVH. A linear correlation between
the Kidokoro score and FOH ratio was found (r = 0.62, p < 0.001) and average FOH
ratio increased by 0.06 for every point increase in the Kidokoro score (95% confidence
interval (CI): 0.05-0.08).

6.3.3 Kidokoro Subscores

In the cerebral white matter (WM) evaluation, statistically significant differences were
observed between the groups in myelination delay, thinning of the corpus callosum
and dilatation of the lateral ventricles subscores. Furthermore, a trend towards bi-
parietal volume reduction in the HT group was seen (p = 0.07). The groups were
different with regards to cerebral WM subscore (p = 0.001). In the cortical GM eval-
uation, infants in the HT arm showed increased extra-cerebral spaces (p<0.001) and
a trend towards delayed gyral maturation (p = 0.07). The cortical and BGT subscores
were lower in the LT group (p < 0.001). The groups were similar in terms of cerebel-
lar signal abnormalities and volume reduction (p = 0.8 and p = 0.4, respectively). The
subscore analysis of the infants are tabulated in 6.2.

6.3.4 Brain and CSF Volumes on TEA-MRI

Brain and CSF volumes could be calculated in a total of 47 infants, of which 21 were
in the LT and 26 in the HT group (Figure 6.2 online). No statistically significant differ-
ences in unadjusted brain and CSF volumes were observed in relation to PHVD (6.3).
When the relative volumes of the brain regions were compared after normalization
of the variables with logarithmic transformation, ventricular CSF volumes of the LT
group were lower than that of the HT group (p = 0.03). Unmyelinated WM volumes
of the LT and HT groups were not significantly different (p = 0.3). Combination of the
WM and GM volumes showed a trend towards higher values in the LT group when
compared with the HT group (p = 0.06). The analyses were performed after excluding
infants with PVHI (n = 4 in the LT and n = 11 in the HT), which resulted in a final sam-
ple of 17 infants in the LT and 15 in the HT group. GM volume showed a trend towards
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Low-threshold
group (n = 44)

High-threshold
group (n = 44)

P value

Gestational age at birth,
weeks

28.1 ± 2.4 27.8 ± 2.7. .6*

Birth weight, g 1176 ± 361 1175 ± 404 .9*
Sex

Male 23 (52) 26 (59) .5†
Female 21 (48) 18 (41)

Day of enrollment 9 (6-10) 9 (6-12) .9‡
Postmenstrual age atMRI,
weeks

41.0 (40.4-42.7) 40.9 (40-41.7) .3‡

GMH-IVH grade
III 30 (68) 25 (57) .3†
III + PVHI 14 (32) 19 (43)

Reservoir inserted 28 (64) 23 (52) .3†
VP-shunt inserted 9 (20) 12 (27) .4†
Duration between VP
shunt and TEA-MRI, days

4 (-1-28) 10 (-10-29) .8‡

Ventricular measure-
ments on MRI, mm
Ventricular width

13.4 (12.6-15.1) 15.9 (14.5-18.8) <.001‡

AHW 6.6 (5.3-10.3) 10.6 (8.4-13.5) <.001‡
FOH ratio 0.42 (0.4-0.46) 0.48 (0.43-0.51) .001‡
Total Kidokoro score 8 (5-12) 12 (9-17) <.001‡

Infants with grade III 7 (5-9) 10 (8-12) <.001‡
Infants with grade III+

PVHI
13 (7-19) 16 (15-19) <.001‡

Kidokoro score severity .002‡
Normal 3(7) 0(0)
Mild 17 (39) 5 (11)
Moderate 12 (27) 13 (30)
Severe 12 (27) 26 (59)

Table 6.1: Clinical characteristics of the study population and MRI assessments
GMH-IVH, Germinal matrix hemorrhage-intraventricular hemorrhage.

Significant values are given in bold.

Values are mean±SD, median (IQR), or number (%).

*t test.

†χ2 test.

‡Mann–Whitney U test
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a higher value (p = 0.06), and combination of the WM and GM volumes was signifi-
cantly higher in the LT group (p = 0.03). There were no differences between groups
in other regions of interest. The FOH ratio was positively associated with ventricular
CSF volumes (β [95% CI]: +145 [72; 218], p < 0.001).

6.4 Discussion
In this nested substudy of our recently published randomized controlled ELVIS trial5
of preterm infants with PHVD, infants who were in the LT group had lower global
brain abnormality scores and had lower regional total subscores of the cerebral WM,
cortical GM and BGT on TEA-MRI. When the total Kidokoro scores were stratified
according to the severity, there were significantly more infants with normal or mildly
increased scores in the LT group, and significantly more infants with moderately or

Low-
threshold
group
(n = 44)

High-
threshold
group
(n = 44)

P value

Cystic lesions .2*
None 27 (61) 18 (41)
Focal unilateral 3 (7) 1 (2)
Focal bilateral 2 (5) 3 (7)
Extensive unilateral 11 (25) 20 (45)
Extensive bilateral 1 (2) 2 (5)

Focal signal abnormality .6*
None 33 (75) 28 (63)
Focal punctate 6 (14) 7 (16)
Extensive punctate 3 (7) 6 (14)
Linear 2 (4) 3 (7)

Myelination delay .01*
PLIC and corona radiata 0 (0) 0 (0)
Only PLIC 32 (73) 21 (48)
Minimal—no PLIC 12 (27) 23 (52)

Thinning of the corpus callosum .02*
None 39 (89) 27 (62)
Partial 2 (4) 5 (12)
Global 3 (7) 11 (26)

Dilated lateral ventricles .01*
Both sides < 7.5 mm 12 (27) 3 (7)
7.5mm ≤ 1 side < 10 mm 9 (20) 5 (11)
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7.5 mm ≤ both sides < 10 mm
or 1 side ≥ 10 mm

13 (30) 13 (30)

Both sides ≥ 10 mm 10 (23) 23 (52)
Volume reduction .07*

cBPW ≥ 77 mm 26 (59) 18 (41)
77 mm > cBPW ≥ 72 mm 13 (29) 13 (29)
72 mm > cBPW ≥ 67 mm 2 (5) 10 (23)
67 mm > cBPW 3 (7) 3 (7)

Cerebral white matter subscore .001†
Median (min-max) 4 (1-13) 7 (1-14)

Cortical gray matter signal abnor-
mality

.5*

None 44 (100) 43 (98)
Focal unilateral 0 (0) 0 (0)
Focal bilateral 0 (0) 1 (2)
Extensive unilateral 0 (0) 0 (0)
Extensive bilateral 0 (0) 0 (0)

Gyral maturation .07*
Delay <2 weeks 4 (9) 1 (2)
2 ≤ delay < 4 weeks 18 (41) 11 (25)
Delay ≥ 4 weeks 22 (50) 32 (73)

Increased extracerebral space <.001*
IHD < 4 mm 24 (55) 1 (2)
4mm ≤ IHD < 5 mm 8 (18) 8 (18)
5mm ≤ IHD < 6 mm 5 (11) 14 (32)
IHD ≥ 6 mm 7 (16) 21 (48)

Deep graymatter signal abnormal-
ity

.2*

None 40 (91) 38 (87)
Focal unilateral 0 (0) 4 (9)
Focal bilateral 1 (2) 1 (2)
Extensive unilateral 3 (7) 1 (2)
Extensive bilateral 0 (0) 0 (0)

Deep gray matter volume reduc-
tion

.06*

cDGMA ≥ 9.5 mm 336 (82) 38 (86)
9.5 mm3 > cDGMA ≥ 8.5 mm 36 (14) 2 (5)
8.5 mm3 > cDGMA ≥ 7.5 mm 30 (0) 4 (9)
7.5 mm3 > cDGMA 2 (4) 0 (0)

Cerebellum signal abnormality .8*
None 26 (59) 24 (55)
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Punctate unilatera l7 (16) 9 (21)
Punctate bilateral 6 (14) 8 (18)
Extensive unilateral 2 (4) 2 (4)
Extensive bilateral 3 (7) 1 (2)

Cerebellum volume reduction .4*
cTCD ≥ 50 mm 30 (68) 23 (52)
50 mm > cTCD ≥ 47 mm 7 (16) 11 (25)
47 mm > cTCD ≥ 44 mm 3 (7) 5 (11)
44 mm > cTCD 4 (9) 5 (11)

Cortical gray matter and deepgray
matter subscore

<.001†

Median (min-max) 4 (0-14) 6 (2-14)

Table 6.2: Kidokoro subscore analysis of the study population
cBPW, Biparietal width corrected for gestational age; cDGMA, deep graymatter area correctedfor gestational age; cTCD,

transcerebellar diameter corrected for gestational age; IHD, inter-hemispheric distance; PLIC, posterior limb of internal

capsule. Significant values are given in bold.

*Fisher exact test.

†Mann-Whitney U test

severely increased scores in the HT group, even though at the time of random-
ization the number of infants with a grade III hemorrhage or PVHI was similar in the
study arms. Infants in the HT group also demonstrated more delay in myelination and
more often partial or global thinning of the corpus callosum. Moreover, lower FOH
ratios, VI and AHW at TEA and smaller ventricular CSF volumes were found in infants
in the LT group. In the subgroup analysis, after excluding infants with PVHI, combi-
nation of the WM and GM volumes was significantly higher in the LT group (p = 0.03).
Using a structured scale assessment together with the quantification of the ventricu-
lar dilatation acquired at TEA, we were able to identify injury in specific regions of
the brain, demonstrating the possible beneficial effects of early intervention after the
onset of PHVD. The pathogenesis of PHVD is a complex process determined by both
direct injury and secondary inflammatory interactions [10, 125–128]. To address the
net effects of PHVD on brain lesions in different regions, an objective structured scale
assessment was used in combination with volumetric analysis in the present study.
This approach enabled us to determine the correlation between ventricular size and
the extent of brain injury. The smaller ventricular CSF volumes together with the
lower global brain abnormality scores as well as lower regional total subscores of the
major regions of the brain in the LT group indicates the possible beneficial effects of
early intervention as we found that almost half (46%) of the infants in the LT group
had normal or mildly increased Kidokoro scores compared with only 11% in the HT
group. In infants with PHVD, expanding ventricles might cause atrophy of the adja-
cent brain tissue as a result of compression by CSF under pressure [129, 130]. By using
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a manual segmentation technique, Jary et al. [129] calculated cerebral, thalamic and
cerebellar volumes, and demonstrated that brain growth is significantly impaired in
PHVD. Ventricles were larger with a median volume of 48 cc (IQR: 27-145) than the
ventricular volumes of both groups in our study (median volume: 18 cc and 24 cc in LT
group and HT group, respectively). Brouwer et al. [4] reported data in a small group
of infants and showed that PHVD was independently associated with decreased vol-
umes of deep GM, cerebellum and extracerebral CSF, despite early intervention. They
found a median ventricular volume of 18.3 cc (range: 8.6 - 64.5) in infants with PHVD,
which is lower than we report in the HT group and overlaps considerably with val-
ues we found in the LT group. It has been shown that in infants with severe IVH
who developed PHVD, ventricular size may be an important determinant of long-term
neurodevelopmental outcome and infants with severe IVH who developed PHVD had
worse neurodevelopmental scores compared with those who did not develop PHVD
[122, 131, 132]. Recently, Leijser et al. [120] reported in their large cohort of preterm
infants with PHVD that those who underwent intervention based on ventricular mea-
surements, prior to the development of symptoms, even when eventually requiring a
VP-shunt, had outcomes indistinguishable from those without intervention, all being
within the normal range. Infants who first received intervention once clinical symp-
toms had occurred had worse outcomes. The volumes of the ventricles, and combined
volume of the unmyelinated WM and GM regions were in favor of the LT therapy in
the present study. We also measured the VI and AHW on TEA-MRI, which revealed
smaller lateral ventricles in the LT group. Whether the smaller ventricular volumes,
and preserved unmyelinatedWM and GM volumes of infants who underwent LT ther-
apy will be associated with improved neurodevelopmental outcomes in the ELVIS trial
is being assessed. The higher Kidokoro scores in infants in the HT group are in line
with the accumulating literature suggesting that progressive ventricular dilatation and
prolonged pressure might be deleterious to the immature brain. A rapidly enlarging
ventricular system could result in compression of adjacent brain parenchyma and this
has been used as an explanation for the MRI signal abnormalities in various regions
of the brain [133, 134]. Since infants in the HT group had larger ventricular volumes
than those of the LT group, the Kidokoro scores of these infants, which increase di-
rectly with the presence of signal abnormalities could have increased. PHVD-induced
microstructural white matter injury, as stated previously by Brouwer et al. [55], might
serve as another explanation for the signal abnormalities on TEA-MRI in our cohort.
It is also worth noting that FOH ratios showed good correlation with ventricular volu-
metric measurements, which can be used as a practical assessment tool for calculating
the ventricular volumes in patients with PHVD. The present study has several limita-
tions. First, as this was a multicenter study, MRI protocols were not the same across
centers, which could have lead to varying image qualities. Second, a relatively large
number of segmented MRIs could not be used for the volumetric analysis. This was
due to the use of convolutional neural network technique, which was trained on seg-
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Volumes Low-threshold
group (n = 21)

High-threshol
dgroup (n = 26)

P value*

Ventricles
Absolute 18 (11-30) 24 (17-37) .07
Relative 0.05 (0.02-0.07) 0.06 (0.04-0.09) .03
Absolute† 16 (12-27) 23 (15-31) .4
Relative† 0.04 (0.03-0.06) 0.06 (0.04-0.07) .1

Unmyelinated whitematter
Absolute1 65 (136-186) 154 (128-184) .5
Relative 0.3 (0.2-0.4) 0.3 (0.2-0.4) .3
Absolute† 165 (140-186) 171 (129-185) .7
Relative† 0.3 (0.2-0.4) 0.3 (0.2-0.4) .6

Cortical gray matter
Absolute1 28 (119-166) 131 (117-155) .8
Relative 0.3 (0.2-0.4) 0.3 (0.1-0.4) .5
Absolute† 129 (119-173) 126 (114-152) .3
Relative† 0.3 (0.2-0.3) 0.2 (0.2-0.3) .06

Combined white and gray matter
Absolute 304 (238-378) 302 (239-316) .3
Relative 0.6 (0.5-0.7) 0.5 (0.5-0.6) .06
Absolute †307 (295-349) 302 (244-315) .1
Relative† 0.6 (0.5-0.7) 0.5 (0.5-0.6) .03

Basal ganglia and thalami
Absolute 25 (21-27) 23 (19-25) .4
Relative 0.04 (0.03-0.05) 0.04 (0.04-0.05) .9
Absolute† 25 (22-27) 24 (22-25) .5
Relative† 0.05 (0.04-0.06) 0.05 (0.04-0.06) .8

Cerebellum
Absolute 31 (25-41) 31 (23-41) .8
Relative 0.06 (0.05-0.07) 0.06 (0.03-0.18) .6
Absolute† 31 (25-41) 32 (25-47) .5
Relative† 0.06 (0.05-0.07) 0.05 (0.04-0.07) .5

Extracerebral CSF
Absolute 127 (98-140) 116 (102-137) .9
Relative 0.2 (0.2-0.3) 0.2 (0.2-0.3) .5
Absolute† 113 (98-145) 119 (105-158) .4
Relative† 0.2 (0.2-0.3) 0.2 (0.2-0.3) .3

Table 6.3: Distribution of absolute and relative brainand CSF volumes between the groups
Data are presented as median (interquartile range).

Absolute volumes are presented in milliliters.

Significant values are given in bold.

* P values are presented after logarithmic transformation of relative volumes.

†Volumes after excluding infants with periventricular hemorrhagic infarct (n = 17 in the low-threshold group and n =

15 in the high-threshold group).
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mented images of preterm neonates without any pathology. As a consequence, the au-
tomatic segmentation had limitations in segmenting scans with PHVD. Furthermore,
because the automatic segmentation method was trained with scans acquired in the
main study site, it was not always able to provide optimal segmentation for images
obtained with a different protocol. This technique also did not allow differentiation
between the basal ganglia and thalamic volumes and could not demonstrate precise
segmentation of myelinated white matter due to technical reasons. Third, because the
present study was a nested substudy, it is possible that the lack of statistically signifi-
cant differences in volumetric measurements was due to a limited sample size. Finally,
there is a potential for selection bias arising from the excluded MRIs. However, we
found that the excluded infants were similar with respect to demographic and clinical
parameters. The main strength of our study was the use of an objective scoring sys-
tem enabling assessment of the extent of brain injury and reliable quantification of the
ventricular and brain volumes in 80% of the surviving infants. Today, PHVD remains
a serious complication of IVH, and control of PHVD using LPs before or just after
the VI crossed the p97 + 4mm line was associated with the lowest need for VP shunt
reported in the literature, according to the ELVIS trial.5 This nested substudy of the
ELVIS trial, designed to address parenchymal injury in different regions of the brain
together with the quantification of the CSF and brain volumes, demonstrates bene-
ficial effects of early intervention on the extent of brain injury and ventricular CSF
volumes. Whether these findings translate into improved neurological development
is being assessed and will be the subject of a later report.
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Abstract
Perinatal arterial ischemic stroke (PAIS) causes significant morbidity and severe long-
termneuropsychological impairment. Neurogenerative interventionsmight have promis-
ing effects on ischemic tissue. To evaluate the effect of the treatment and brain de-
velopment after PAIS, brain MR images acquired after the acute phase following the
stroke and three months later can be utilized. Such evaluation requires accurate quan-
titative measurements of the ischemic tissue and of the unaffected brain tissue volume.
MR images made after symptoms of PAIS allow visualization of the stroke tissue on
diffusion-weightedMRI (DWI), while different brain tissues are visible on T2-weighted
MRI. Therefore, a multi-modal segmentation method analyzing both of these images
is proposed to identify stroke and the tissue classes of the unaffected parts of the
brain, i.e. cerebellum (CB), basal ganglia and thalami (BGT), ventricular cerebrospinal
fluid (vCSF), white matter (WM), brain stem (BS), cortical gray matter (cGM) and the
extracerebral cerebrospinal fluid (eCSF). The developed method uses a convolutional
neural network with U-net-like architecture, encodes the features of DWI and T2-
weighted scan in two separated encoding paths that are fused in the decoding path.
At three months follow-up, CSF cysts appear in place the ischemic tissue. Hence, a
single-modality network is applied to segment brain into the same seven tissue classes.
To evaluate the segmentation quantitatively Dice coefficient (DC) and Mean surface
distance (MSD) per tissue class are computed between automatic and manual expert
annotations. In the neonatal scans, multi-modal network was tested on four scans
and achieved the average DC of 0.89 and MSD of 0.44 mm over all tissue classes. In
the three-months follow-up MR scans, segmentation method was tested on six scans
and the average DC and MSD were 0.91 and 0.32. Furthermore, to evaluate the pro-
posed networks on a larger set, the proposed methods were applied on MRI scans to
58 neonates. The quality of segmentation was scored using 5-point Likert score where
1 indicates the segmentation can not be used for further analysis, and 5 indicates ac-
curate segmentation quality. The segmentation performance of multi-modal network
and single-modality network achieved respectively 4.3 and 4.4.These results demon-
strate that the proposed approach can achieve accurate segmentation of scans acquired
in the acute phase following stroke and in scans acquired at three months follow-up.
Thereby, the segmentation methods can potentially be used for quantification of brain
tissue volume development in PAIS.
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Stroke, Brain segmentation, Neonatal MRI, Deep learning, Multi-modal segmenta-
tion

7.1 Introduction
Perinatal arterial ischemic stroke (PAIS) is an important cause of long-lasting neu-
rodevelopmental problems [135, 136]. PAIS is diagnosed with MR as soon as infants
present with hemi-convulsions. Moreover, infants suffering from PAIS are imaged
three months later to estimate the residual damage. Volumetric measurements ob-
tained from segmentation of brain tissue classes between the two MR acquisitions
quantitatively demonstrate the effect of ischemic brain tissue on brain development
[137]. These analyses can be used to investigate the effect of neuroregenerative inter-
vention such as recombinant human erythropoietin (rhEPO) on brain developments
[56]. Given that obtaining extremely time-consuming manual annotations for these
quantitative measurements is practically infeasible in the clinical routine or in large
studies, user-independent automatic segmentation is required.

Several methods have been developed to segment brain tissue classes in neona-
tal MRI without visible pathology [12, 13, 71, 138–144]. However, stroke may cause
large variations in unaffected brain tissues and ischemic tissuemorphologywhichmay
substantially vary appearance and shape as illustrated in Figure 7.1. In large strokes,
swelling may be observed, compressing the ventricles and in some cases it may lead to
a midline shift [145]. Small strokes may occur in multiple brain regions and may cause
local changes but they do not affect other anatomy. In the months following the acute
phase following stroke, the brain deforms due to disintegration of the ischemic tissue
that is replaced by CSF. Hence, the scans made about three months after the stroke
show a wide variation in brain shapes. These variations, in both neonatal MR images
and in the follow-up MRs, pose challenges for automatic segmentation methods.

Thus far, a few methods have been proposed for segmentation of ischemic lesions
in neonatal MRI. Murphy et al. [146] proposed a machine learning method to segment
hypoxic- ischemic (HI) brain tissue in encephalopathic asphyxiated neonates using
DWI. The proposed method classifies ischemic pixels based on their spatial and inten-
sity features using random forest. The method achieved moderate sensitivity and high
specificity and demonstrated promising segmentation results for quantifying HI brain
tissue. In another study, Išgum et al. [147] proposed a method for segmentation of
ischemic stroke exploiting DWI and ADC maps. The method used spatial and texture
features and performed classification using a linear classifier. The results demonstrate
high sensitivity at the expense of limited false positive errors. Furthermore, Golsh et al.
[148] compared three methods, namely symmetry-integrated region growing (SIRG),
hierarchical region splitting (HRS) and modified watershed (MW) segmentation to de-
tect HI using DWI. The segmentation method demonstrated moderate sensitivity and
high specificity.



110 Chapter 7

Figure 7.1: Examples illustrating slices from MR scans of three neonates with PAIS, showing the
T2-weighted image (left) and diffusion weighted image (middle) in the acute phase. In T2-weighted
image at threemonths after the stroke (right) some asymmetry can be observed (Patient 1), severe
tissue loss, replaced by CSF (Patient 2), and limited tissue loss (Patient 3). The areas with stroke
are indicated by a red arrays on DWI.
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To the best of our knowledge, deep learning methods for ischemic stroke segmen-
tation have only been applied to adult MR brain. Zhang et al. [149] proposed a 3D
convolutional neural network (CNN) with a dense connection to segment ischemic
stroke in adult diffusion-weighted brain MRI (DWI). The method was evaluated on lo-
cal and public data from Ischemic stroke lesion segmentation (ISLES 2015) challenge.
Praveen et al. [150] proposed an unsupervised feature learning approach for the same
task. This method applied an autoencoder on four MR modalities comprising of T1,
T2, DWI and FLAIR. The encoded features were classified into normal or stroke with
a support vector machine classifier. The network was evaluated on the data from ISLS
2015 challenge and achieved an accurate segmentation performance.

These methods performed segmentation of the stroke lesions only and did not
analyze unaffected brain tissues. However, investigating these tissues is important to
e.g. quantify the effect of treatment or for prediction of stroke outcome. Hence, in this
study, we propose automatic method for segmentation of both stroke lesions and brain
tissues (CB, basal ganglia and thalami (BGT), ventricular cerebrospinal fluid (vCSF),
WM, BS, cortical gray matter (cGM), eCSF) in infants suffering from PAIS in a fast de-
veloping neonatal brain. Brain tissues in neonates are best visible on T2-weightedMRI
and ischemic stroke tissue is visible on DWI. Thus, to develop a method that segments
brain tissues and stroke together in an end-to-end manner, a multi-modal network
extracting features from both DWI and T2-weighted scan is needed. Given that only
brain tissues are visible in the follow-up imaging, and no longer detectable ischemic
lesion are present on DWI, only T2-weighted images need to be analyzed. Hence, to
allow segmentation of stroke lesions in images acquired after the stroke onset and its
consequence on residual brain tissues in images acquired in the three months follow-
up, we developed two networks that can analyze multi-modal and single-modal in-
put data. Inspired by recently proposed multi-modal segmentation network Fusenet
[151], our multi-modal network has a U-net architecture where in the case of the multi-
modal input two encoding paths - one for DWI and one for T2-weighted image - are
connected to decoding path using skip connections [52]. Instead of fusing features in
encoding paths, the skip connection of U-net is used to concatenate features in the
decoding paths. In case of the single-modality input, network has a standard U-net
like architecture. Both networks have the same number of layers and the same kernel
sizes.

The remainder of this paper is organized as follows: In Section 7.2 the data set
used for the method development and evaluation is described. In Section 7.3 the seg-
mentation method is presented and in Section 7.4 the evaluation method is given. The
performed experiments and their results are presented in Section 7.5, followed by a
discussion in Section 7.6 and conclusion in Section 7.7.
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7.2 Data

The study included 64 infants with suspected PAIS admitted to the Department of
Neonatology, UniversityMedical Center Utrecht (UMCU), the Netherlands. All infants
had acute symptoms often in the first week after birth, most often (hemi) convulsions,
but in a few infants their symptoms were less neurologically specific. All had PAIS
confirmed on their neonatal MRI. Informed verbal parental consent was obtained to
perform an MRI for clinical purposes. The Institutional Review Board of the UMCU
approved the use ofMRI data for anonymous data analysis andwaived the requirement
to obtain written informed consent.

7.2.1 Neonatal MRI

Infants suspected of PAIS underwent MR brain imaging 3 to 10 days after birth. 26
neonates were scanned with 1.5T Philips Achieva MR scanner and the remaining 40
neonates were scanned with 3T Philips Achieva MR scanner. The imaging parame-
ters are listed in Table 7.1. Furthermore, clinical characteristics of the study popula-
tion are listed in Table 7.2. In this study, T2-weighted MRI and DWI were used to
segment stroke tissue and brain tissue classes. DWI has high sensitivity for detecting
ischemic lesions in the acute phase, that is, during the first few days after the insult
when signs on T2-weighted scan can bemissed. On the other hand, brain tissue classes
are not clearly visible on DWI, thus T2-weighted scan was used for this purpose. Both
sequences were acquired in axial plane and B value in DWI was set to 1000 s/mm2.

To define the reference standard, the brain was manually segmented into seven
tissue types (CB, BGT, vCSF, WM, BS, cGM and eCSF). This was performed by an ex-
pert on 10 T2-weighted MRIs among which 5 were made with 1.5T MR and 5 with
3T MR scanner. The stroke tissue was manually segmented on 10 DWI acquired of
the same infants by a different expert. Annotation was accomplished by manual pixel-
wise painting of the brain tissues in each image slice using an in-house developed
software. The labeling of each of the seven classes was indicated by a color over-
lay. The software allowed the user to zoom-in, zoom-out and scroll through the slices
during the manual segmentation. The manual segmentation protocol was identical
to the protocol described by Išgum et al. [22] for neonatal brain tissue segmentation.
To merge the stroke segmentations with the brain tissue segmentation labels, DWI
and T2 scans were registered using elastic transformation. Prior to registration, DWI
scans were first resampled to match the resolution of T2-weighted scan using third-
order B-spline interpolation. Thereafter, registration was performed using Elastix reg-
istration toolbox as a composition of a rigid Euler transform followed by a nonrigid
B‐spline transformation [152]. Both transformations were optimized with an adaptive
stochastic gradient descent using mutual information as the similarity metric. A rigid-
ity penalty [153] was applied to the entire volume during deformable registration. The
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Sequence Nr Matrix Voxel Size TE/TR
neonatal Scan 1.5T T2 24 256 × 256 × 50 0.703 × 0.703 × 2 50/7670

DWI 24 256 × 256 × 25 0.703 × 0.703 × 4 89/4000
3T T2 40 512 × 512 × 50 0.352 × 0.352 × 2 120/6629

DWI 40 224 × 224 × 33 0.804 × 0.804 × 3 114/5453
Follow-up Scan 1.5T T2 24 256 × 256 × 50 0.703 × 0.703 × 2 50/7670

3T T2 40 512 × 512 × 52 0.352 × 0.352 × 2 120/6629

Table 7.1: Parameters of MRI scans. For each set and MR sequence (Sequence) the table lists total
number of scans (Nr), reconstruction matrix (Matrix), repetition time (TR) in ms, echo time (TE) in
ms, and reconstructed voxel sizes expressed in mm.

Middle cerebral artery Posterior
Main
branch

Anterior
trunk

Posterior
trunk

Cortical
branch

Lenticulostriatal
branch

cerebral
artery

Sex
(male/female)

9/4 2/2 4/3 11/9 4/4 4/2

Gestational age
(weeks)

39
[37 – 42]

40
[38-41]

39
[36-40]

40
[37-42]

40
[38-41]

40
[39-41]

Birth weight
(grams)

3190
[2450-3572]

3285
[2535-3525]

3300
[2512-3515]

3530
[2150-4040]

3474
[2812-5005]

3143
[2145-4330]

Age at 1st scan
(days)

4
[1-21]

4
[3-16]

3
[1-5]

4
[1-7]

4
[2-7]

4
[4-5]

Age at 2nd scan
(days)

101
[80-127]

95
[84-115]

97
[75-118]

93
[74-111]

93
[78-108]

91
[89-97]

Seizures 13 (100%) 4 (100%) 6 (86%) 18 (90%) 6 (75%) 5 (83%)
Side of stroke
(left/right/bilateral)

5/8/0 1/3/0 5/2/0 14/5/1 6/1/1 3/3/0

Table 7.2: Characteristics of the study population. Based on the arterial territory of the stroke,
the table lists patient sex, gestational age, birth weight, age at neonatal scan acquisition, age at
follow-up scan acquisition, presence of seizure symptoms and stroke side.

parameter files used for the registration are described by Florkow et al [154] 1. Stroke
labels were subsequently transformed from DWI to the T2 scan using the obtained
transformation parameters.

7.2.2 Follow-up MRI

Same as scans acquired after the acute phase, 26 neonates were scanned with 1.5T
Philips Achieva MR scanner and the remaining 40 neonates were scanned with 3T
Philips Achieva MR scanner. Image acquisition parameters are listed in Table 7.1. Be-
cause in the follow-up imaging, only brain tissue classes are visible and ischemic area
has disintegrated, we analyzed T2-weighted MRI.

Following the same procedure as in neonatal MR, the reference standard was de-
fined on 12 scans following the same manual annotation protocol dividing the brain
into seven tissue classes (CB, BGT, vCSF, WM, BS, cGM and eCSF).

1http://elastix.bigr.nl/wiki/index.php/Par0059
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7.3 Method

To quantify volumetric brain development in infants with PAIS a multi-modal network
to segment brain tissue classes and ischemic tissue using T2-weighted MRI and DWI
is proposed. To align T2-weighted MRI showing brain tissue types of unaffected areas
and DWI showing ischemic tissue into a common coordinate, they are resampled and
aligned following the same procedure described in Section 7.2.1. Furthermore, a single-
modality network with similar architecture was developed to segment brain tissue
classes in T2-weighted scans acquired in three-months follow-up.

7.3.1 Network Architecture

To analyse multi-modal and single-modality input data, our networks are based on U-
net architecture [52]. U-net architecture is widely used in medical image analysis par-
ticularly in segmentation. It consists of encoding and decoding paths. The encoding
path comprises of repeated 3 × 3 convolutions followed by rectified linear units (Re-
LUs). The skip connections connect encoding path to decoding path in each layer after
which a 2×2max pooling downsamples the features. The number of feature channels
doubles after every two convolutional layers. In the expansion path, an up-sampling
is followed by a 2 × 2 convolution which halves the number of feature channels. The
results are concatenated with encoding feature maps convolved by two 3 × 3 convolu-
tional layers followed by a ReLU. In the final layer, one 1 × 1 convolutional layer maps
each component of the feature vector to the desired class. Batch normalization [61] is
applied after all convolutional layers to allow for faster convergence.

The multi-modal network architecture segments brain tissues and stroke from
DWI and T2-weighted scan in the neonatal scans. For this, we add one extra encod-
ing path to encode DWI in parallel with T2. The skip connections concatenate the
feature maps from DWI and T2-weighted scan into decoding feature maps. Figure 7.2
illustrates the network architecture.

A single-modality network segments brain tissue classes in the three-months follow-
up scans. For this, U-net architecture described above is employed. The network seg-
ments brain tissues into seven tissue classes.

Both networks were trained on three consecutive slices which are provided to the
network as channels. Multi-modal input network was trained with 3D patches of
416 × 416 × 3 voxels in each path. A single-modality network was trained with 3D
patches of 512×512×3 voxels. To compensate for the extreme imbalance among class
distributions in the brain tissue segmentation, the average Dice coefficient over all
classes was used as the loss function. In this way, the network was penalized equally
for the mislabelling of classes with the least and most samples. The network was op-
timized using the Adam optimizer with Nesterov momentum [59, 60] using a fixed
learning rate of 0.0001. Standard data augmentation techniques, namely random flip-
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Figure 7.2: Multi-modal Unet-like architecture. The network consists of multiple contraction paths
and an expansion path. Each contraction path consists of repeated convolution layers followed
by max pooling. The expansion path concatenates two contracting paths with the upsampling
feature maps, that are followed by convolution layers. The network inputs are three slices of DWI
and T2-weighted images and the output is segmentation.
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ping and rotation, were used during training to increase the variation in the training
data. The slices were flipped in the horizontal and vertical direction with 20% probabil-
ity and were rotated with a rotation angle randomly chosen between 0 and 20 degrees.

7.4 Evaluation
Defining manual reference segmentation for brain tissue classes and stroke requires
highly specialized expert. In addition, the task is extremely time consuming. There-
fore, in our study manual annotations were available in a limited subset of MR scans.
In images with available manual annotation, the automatic brain tissue segmentation
was evaluated by comparing manual reference segmentation and automatically ob-
tained segmentation using the Dice coefficient (DC) as overlap metric, and the Mean
surface distance (MSD) as a boundary measure. These metrics were calculated in 3D.
In images without available manual reference annotation, qualitative evaluation was
carried out by an expert using 5-points Likert scale [155]. The automatic segmenta-
tions of all brain tissue types and of ischemic tissue were scored separately. The score
was 1 when the segmentation failed in all tissue types, 2 when the segmentation qual-
ity was poor in three or more tissues, 3 when the segmentation quality was poor in
one or two tissues, 4 when the segmentation quality was good over all tissues, and
5 when the segmentation was accurate. Similarly, the ischemic tissue segmentation
scored 1 when the automatic method failed, 2 when more than 50% of ischemic tissue
was segmented incorrectly, 3 when about 25%-50% of ischemic tissue was segmented
incorrectly, 4 when the ischemic tissue was well segmented but with errors along the
boundary, and 5 when the segmentation was accurate.

7.5 Experiments and Results
Proposed multi-modal network for segmentation of ischemic stroke tissue and brain
tissue types was applied to neonatal MRI. Proposed single-modality network was ap-
plied for segmentation in follow-up scans. In the ablation study performance of the
proposed multi-modal network was compared with two networks.

7.5.1 Quantitative evaluation of the automatic segmentation in the neona-
tal MRI

The scans with available manual segmentation were divided equally into training and
test set based on the strength of scanner (3T and 1.5T) and visually graded stroke
size. Five scans were acquired with 3T scanner and remaining 5 scans were acquired
with 1.5T scanner. Hence, the network was trained on DWI and T2-weighted scans
of 6 patients and tested on the remaining 4 patients. The average performance of the
multi-modal network per tissue over 4 patients is listed in Table 7.3 for each of the
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CB eCSF BGT vCSF WM BS cGM Stroke Mean
Multi-modal DC 0.94 0.84 0.92 0.86 0.91 0.94 0.86 0.83 0.89

MSD 0.97 0.21 0.40 0.18 0.16 0.19 0.13 1.33 0.44
Two separate networks DC 0.82 0.79 0.81 0.81 0.88 0.88 0.84 0.77 0.82

MSD 0.87 0.30 0.92 0.36 0.39 0.41 0.23 2.00 0.69
Multi-channel DC 0.94 0.83 0.90 0.83 0.90 0.93 0.84 0.80 0.87

MSD 1.04 0.25 0.91 0.23 0.19 0.77 0.17 4.56 1.01

Table 7.3: Segmentation performance for seven brain tissues and stroke. The evaluation of three
experiments is shown 1) the proposed multi-modal network trained with DWI and T2-weighted
MRI 2) multi-channel network trained with DWI and T2-weighted MRI as two input channels 3) two
separate networks: one trained with DWI and the second one trained with T2-weighted MRI. The
results are expressed as the mean Dice coefficient (DC) and the Mean surface distance (MSD) in
mm over evaluated scans.

seven brain tissue classes and stroke. The average DC ranged from 0.83 for ischemic
stroke to 0.94 for CB, and the average MSD ranged from 0.16 mm for WM, to 0.97 mm
for CB. Figure 7.3 illustrates multi-modal segmentation performance compared with
manual segmentation.

7.5.2 Quantitative evaluation of the automatic segmentation in three-months
follow-up scans

The scans with available manual segmentation were divided equally into training and
test set based on the strength of scanner (3T and 1.5T) and the stroke size replaced by
CSF graded visually. Six scans were acquired on 1.5T scanner and the remaining six
scans on 3T scanner. The network was trained with six T2-weighted neonatal MRIs
and tested on the remaining six scans. The average segmentation performance over
test set is listed in Table 7.4. The average DC ranged from 0.88 for eCSF to 0.96 for CB,
and the average MSD ranged from 0.10 mm for cGM to 0.58 mm for vCSF. Figure 7.4
illustrates examples of automatic segmentation.

CB eCSF BGT vCSF WM BS cGM Mean
DC 0.96 0.88 0.93 0.89 0.89 0.92 0.91 0.91
MSD 0.45 0.25 0.34 0.58 0.14 0.37 0.10 0.32

Table 7.4: Performance of brain tissue segmentation into seven tissue classes in three-months
follow-up scans. The results are expressed as themean Dice coefficient (DC) and theMean surface
distance (MSD) in mm.

7.5.3 Qualitative Evaluation
To evaluate segmentation in a larger set of patients, themulti-modal network for analy-
sis of neonatal images and the single-modal network for analysis of follow-up images
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Figure 7.3: Examples of automatic ischemic stroke and brain tissue segmentation in neonatal MRI.
A slice from T2-weighted MRI (first column); a slice from DWI (second column); segmentation ob-
tained by two separate networks (third column); segmentation obtained bymulti-channel network
(fourth column); segmentation obtained by the proposedmulti-modal segmentation network (fifth
column); manual reference segmentation (last column).
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Figure 7.4: Examples of automatic brain tissue segmentations of three-months follow-up scans. A
slice from T2-weighted neonatal MRI (first column); the obtained automatic segmentation (second
column); manual reference segmentation (third column).
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All tissues Stroke
All tissues
≤ 3-point

Stroke
≤ 3-point

Single-modal 4.4 - 11 -
Multi-modal 4.3 4.1 9 10

Table 7.5: Qualitative segmentation performance of neonatal and follow-up scans using 5-point
Likert scale. The average scores for tissue types and stroke tissue are listed in first and second
column, respectively. Number of scans in which tissue types overall and stroke tissue particularly
are scored below 3 were listed in the third and forth column.

were applied to images of 58 infants. Given that the manual segmentation was not
available for these, the results were evaluated visually as described in Section 7.4. The
average scores on the 5-point Likert scale in neonatal scans and three-months follow-
up are listed in Table 7.5. In neonatal scans, average assigned grade over all patients
was 4.3 for brain tissues and 4.1 for stroke tissue. In total, 9/54 scans and 10/54 scans
only were graded less than 4 for brain and stroke tissues, respectively. In the follow-
up scans, average assigned grade for brain tissue segmentation over all patients was
4.4. In total 11/52 scans were graded less than 4. All of these scans had slices affected
by motion artifacts that hampered segmentation. Figure 7.5 illustrates segmentation
results obtained in scans acquired with 3T and 1.5T scanners.

7.5.4 Robustness with respect to imaging artifacts

Visual analysis revealed examples of images with artifacts that were accurately seg-
mented and others that were not. Examples of multi-modal segmentation on images
with susceptibility artifacts are illustrated in Figure 7.6. Illustrated DWI slices depict
hyperintensity artifact in the occipital lobe of the brain which can mislead stroke di-
agnosis in areas with no infarct. This is a common artifact caused by an off-resonance
field induced by differences in magnetic susceptibility at the air-tissue interface [156].
However, the proposed multi-modal network segmented these areas accurately as
these artifacts were visible in the training set and this segmentation was graded 5.

Furthermore, examples of multi-modal segmentations in DWIwith acutely low sig-
nal intensity are illustrated in Figure 7.7. In these examples, the multi-modal network
under-segmented ischemic tissue due to low signal of intensity. This low intensity
in DWI often appears in cases when ischemic lesions are small or when the MRI is
acquired more than 7 days after birth, i.e. stroke onset.

Another common artifact in neonatal imaging is is caused by the movement of the
infant during scanning. Figure 7.8 illustrates the segmentation result in T2-weighted
MRI affected by motion artifact. The segmentation was challenging for tissue classes
such as cGM and BGT, but stroke segmentation scored. Similar to neonatal MRI, mo-
tion artifacts in three-months follow-up scans are challenging for automatic segmen-
tation. Examples of the single-modality network on scans with motion artifacts are
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illustrated in Figure 7.9.

Figure 7.10 illustrates an automatic segmentation of eCSF and vCSF. These tissues
have the same characteristics therefore, in a few examples where the vCSF was near
the former ischemic tissue, the network segmented a few spots of vCSF in eCSF areas.

7.5.5 Multi-modal vs multi-channel vs two separated networks

To segment brain tissues and ischemic tissue from DWI and T2-weighted neonatal
MRI, we proposed using multi-modal network. This network composes the features
from both sequences and generates the segmentation. To evaluate advantages of the
multi-modal network, we designed two experiments. In the first experiment, two sep-
arate networks with U-net architecture were trained. One network was trained on
DWI to segment ischemic stroke tissue as a binary class and the other network was
trained on T2-weighted scan to segment brain into seven tissue classes. The result of
stroke segmentation masked the brain tissue segmentation i.e. in T2-weigted image
brain voxels were replaced by ischemic tissue. The segmentation results are listed in
Table 7.3. The results show that the average DC for all eight tissue classes decreased
in comparison with the proposed multi-modal network. This demonstrates the benefit
of combining these two segmentation tasks in one network.

In the second experiment, DWI and T2-weighted scans were given as two input
channels to U-net architecture. Therefore, the network input comprised 2D slices of
DWI and T2-weighted scan with 416 × 416 × 2 input shape. The network has a single
encoding path that encodes both DWI and T2-weighted scan together in the first layer.
The segmentation results listed in Table 7.3 show that the segmentation performance
decreased in comparison with multi-modal segmentation evaluated with both DC and
MSD. However, the segmentation performance of this experiment outperforms the
experiment using of two separate networks when evaluated using average DC over all
tissue classes, but not using MSD. Figure 7.3 illustrates the automatic segmentation of
three experiments compared with manual segmentation.

7.5.6 Comparison with state-of-the-art

We compared the performance of the proposed multi-modal segmentation method
with the performance of published methods for brain tissue segmentation in neonates.
Note that in the lack of stroke segmentation methods in infants, we can only compare
segmentation results for tissue classes.(Table 7.6). The table shows that the perfor-
mance of the proposed method is comparable to the performance of two top ranked
methods in NeoBrainS12 challenge2. The multi-modal segmentation network gener-
ates more accurate segmentation over all tissue classes than two other methods. Given

2https://neobrains12.isi.uu.nl/
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Figure 7.5: Examples of neonatal MRI with stroke in the perinatal scan and 3-months follow-up.
A slice from T2-weighted perinatal scan (first column); the corresponding DWI slice (second col-
umn); automatic stroke and brain tissue segmentation obtained with the proposed multi-modal
network (third column); T2-weighted follow-up scan in three months old neonate (fourth column);
automatic brain tissue segmentation in the three months scan (last column). Two top rows are
scanned with 3T strength field scanner and two bottom rows are scanned with 1.5 strength field
scanner.
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Figure 7.6: Examples of automatic segmentation in DWI slices with susceptibility artifacts. A slice
from DWI with susceptibility artifacts in the occipital lobe (first column); the corresponding T2-
weighted slice (second column); automatic stroke and brain tissue segmentation obtained with
the proposed multi-modal network (third column). The artifacts are marked with yellow ellipse
caused hyperintensity in DWI, however, these had no influence on the automatic segmentation
result.
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Figure 7.7: Examples of segmentation in DWI slices with low signal intensity. A slice from DWI
with low signal intensity (first column); the corresponding T2-weighted MRI slice (second column);
automatic stroke and brain tissue segmentation obtained with the proposedmulti-modal network
(third column). The ischemic tissue is marked with yellow ellipse. The automatic segmentation
did not detect ischemic tissue (top row), and undersegmented ischemic tissue in the middle and
bottom rows.
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Figure 7.8: Examples of automatic segmentation in slices with motion artifacts. A slice from T2-
weighted MRI with motion artifacts (first column); the corresponding DWI slice (second column);
automatic brain tissue segmentation obtained with multi-channel network (third column); auto-
matic brain tissue segmentation obtained with the proposed multi-modal network (forth column).
Motion artifacts visualized only on T2 slices, the ischemic stroke segmentation generated by multi-
modal network was affected less in compare with multi-channel network.
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Figure 7.9: Examples of automatic segmentation in slices with motion artifacts. A slice from T2-
weighted images with motion artifacts (top row); automatic brain tissue segmentation obtained
with single-modal network (bottom row). The automatic method was challenged by motion arti-
facts, particularly in cGM. The segmentation errors in areas with motion are indicated by arrows.
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Figure 7.10: Examples of segmentation in the follow-up scans. A slice from T2-weighted image
(top row); automatic brain tissue segmentation obtained with single-modal network (bottom row).
The single-modal network segmented small part of eCSF as vCSF. The mistakes are indicated with
green ellipses.
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CB eCSF BGT vCSF WM BS cGM Stroke Mean
Multi-modal DC 0.94 0.84 0.92 0.86 0.91 0.94 0.86 0.83 0.89

MSD 0.97 0.21 0.40 0.18 0.16 0.19 0.13 1.33 0.44
Moeskops et al. [13] DC 0.93 0.83 0.91 0.81 0.93 0.85 0.87 − 0.87

MSD 1.14 0.19 0.46 0.43 0.12 0.35 0.11 − 0.40
Wang et al. [142] DC 0.92 0.79 0.92 − 0.92 0.83 0.86 − 0.87

MSD 0.45 1.18 0.33 − 0.13 0.27 0.11 − 0.41

Table 7.6: Performance of the multi-modal network and two recent methods evaluated with the
Dice coefficient and MSD. The previous methods were evaluated on NeoBrainS12 to challenge
data in axial neonatal MRI without visible pathology. Hence, this comparison can be used as an
indication only.

that the methods have been evaluated using different data sets this comparison pro-
vides an indication only.

7.6 Discussion
We presented automatic methods for the segmentation of ischemic and brain tissue
classes in infants with PAIS. To the best of our knowledge, this is the first attempt
to segment ischemic tissue as well as healthy brain tissue in MR scans of infants af-
fected by stroke. The segmentation methods were applied to the neonatal MR images
acquired after the acute phase following the stroke and about three months after the
stroke. In the neonatal scans, ischemic tissue is visible in DWI and brain tissues are
best shown in T2. Therefore, to segment brain tissues and stroke in neonatal MRI from
DWI and T2-weighted scan, a multi-modal network was proposed. In three-months
follow-up scans, CSF cysts replace ischemic tissue which is not visible in DWI any-
more. Therefore, a single-modal network segmented brain tissues in three-months
follow-up scans. The segmentation performance was evaluated quantitatively using
DC and MSD in a data set of a limited size, and qualitatively using Likert scale in a
large set. The results demonstrate that the proposedmulti- and single-modal networks
lead to accurate segmentations of the stroke lesions and brain tissue classes.

The population included in this study has a large variation in stroke volume. These
variations are often an obstacle to automatic analysis methods. To overcome this, the
multi-modal network was trained and tested on data which was visually balanced
based on tissue volume distribution. Volumetric balancing was possibly important
because of the small training set size but that availability of large set that would then
necessarily contain variations in stroke lesion characteristics would circumvent the
problem.

The ablation study shows that proposed multi-modal network outperforms seg-
mentation using two separate networks and a multi-channel network. The multi-
modal network encoded features from both modalities and therefore, generated more
accurate segmentation in comparison with two separate networks. Moreover, having
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two separate paths for each MRI modality specialized kernels to specific modality and
therefore, the multi-modal segmentation method generated more accurate segmenta-
tion that the multi-channel network. The proposed multi-modal network can be eas-
ily adjusted for application in different image analysis tasks that require information
from multi-modal MR and potentially other data. Furthermore, the network can be
easily customized to accommodate more than two inputs straightforward by addition
of extra encoding branches.

The proposed single-modal segmentation network accurately segments the brain
into seven tissue classes. The large stroke volume variation in neonatal MRI results
in a large tissue volume variation in three-month follow-up scans. This challenges
the automatic segmentation of cGM, eCSF and WM therefore, the training set and
evaluation set were roughly balanced based on tissue volume distribution by visual
evaluation. Volumetric balancing was possibly important because of the small training
set size but that availability of large set that would then necessarily contain a large
variation caused by CSF cysts replaced of ischemic tissue. The variations in remaining
tissue characteristicswould circumvent the problem. However, in few caseswhere CSF
cysts were near ventricle the network segmented cysts as vCSF (see Figure 7.10). The
tissue characteristic of vCSF and eCSF are the same and we expect that the network
distinguishes them based on the difference in their shape and location. However, in 3-
months follow-up the scans the location and shape of eCSF and vCSF vary dramatically.
This may be improved by increasing the number of training data with representative
examples.

The population included in this study was scanned with two different MRI scan-
ners, 24 infants were scanned with a scanner with 1.5T field strength and 40 infants
with 3T field strength scanner. The proposed single-modality and multi-modal net-
works were trained on a well-balanced combination of 3T and 1.5T scans and the eval-
uation results show accurate segmentation performance in both set of scans.

Furthermore, as shown in Figure 7.7, multi-modal network was able to segment
images in presence of susceptibility artifacts even though, these artifacts cause hyper-
intensity in DWI that can be confused with the ischemic tissue. This might be due to
the presence of such artifacts in the training set, enabling, the network to distinguish
between artifact hyperintensity and ischemic hyperintensity.

The segmentation performance in both single-modal and multi-modal networks
was hampered by motion artifact particularly in cGM (see Figure 7.8). Motion artifacts
can be removed using image-to-image-translation between scans affected by motion
and scans without motion artifacts [144]. Joint correction of motion or other image
artifacts and image segmentation may be an interesting direction for future work to
improve segmentation performance.

Our method was trained with only 6 and 5 scans for first and second scan seg-
mentation tasks, respectively while previous deep learning methods was trained on
90 subjects to segment ischemic stroke from DWI [149]. Given that generating brain
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tissues by manual annotations is extremely time-consuming, reducing the number of
the needed annotated training scans substantially reduces the required annotation ef-
fort and associated costs. Using generative models to synthesize pathology on images
from currently available manually segmented scans would increase training data size.
Specifically, using conditional generative models to control pathology characteristics,
such as size and shape of abnormality, could generate a large training set from a lim-
ited number of available manual segmentation. This may improve segmentation per-
formance and can be a direction for future work.

Analyzing ischemic and brain tissue volumes in the neonatal scans and in three
months follow-up scans allows investigating the effect of the neurodegenerative inter-
vention on brain growth. Several studies previously showed contradictory results on
the effect of neurodegenerative treatment namely rhEPO on ischemic tissue [56, 157,
158]. The proposed methods can potentially quantify the effect of rhEPO treatment in
perinatal arterial ischemic stroke, which would be of great clinical interest. The volu-
metric measurements of brain tissue classes in neonatal MRI can be compared between
infants treated with rhEPO and untreated infants. However, this requires further de-
velopment of the an automatic method to split right and left hemispheres. Moreover,
the analyses on effect of ehEPO can be extended using other imaging modalities such
as diffusion tensor imaging and comparing fractional anisotropy index in neonates
treated with rhEPO vs those who were not treated. Finally, functional analysis includ-
ing baby’s outcomes in older age would eventually enable relating brain tissue and
stroke lesion characteristics in MRI and long term treatment effects.

7.7 Conclusion
We presented automatic methods for segmentation of ischemic stroke and brain tissue
classes in MRI of infants diagnosed with PAIS. The methods are based on convolu-
tional neural networks with U-net-like architecture that take single- or multi-modal
MR scans as input. The networks obtained accurate segmentation and the results can
be potentially used to evaluate the effect of neurogenerative interventions on perinatal
arterial ischemic stroke.
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The previous chapters describe methods for automatic segmentation of the brain in
neonatal and fetal MRI. This chapter summarizes the methods and findings and dis-
cusses implications and possible directions for future research.

8.1 Summary
CHAPTER 2 describes a method for automatic extraction of the intracranial volume in
fetal and neonatal MRI using convolutional neural networks. A network using U-net
architecture was trained with a combination of fetal scans and preterm born neonatal
scans acquired in axial, coronal, and sagittal orientations. The method is evaluated
on scans with different imaging parameters (field strength, image acquisition plane,
image resolution) and different pathologies (posthemorrhagic ventricular dilatation
(PHVD), stroke, asphyxia, Down syndrome). We showed that our method can reliably
segment the intracranial volume (ICV) from a diverse set of scans including fetal and
neonatal MRI with pathology.

CHAPTER 3 describes a method for the segmentation of brain tissues in fetal MRI
using a convolutional neural network. The method first identifies the ICV from the
fetal MRI using the method proposed in CHAPTER 2. Subsequently, the second network
with an identical network architecture segments the brain into seven tissue classes,
notably: cerebellum (CB), basal ganglia and thalami (BGT), ventricular cerebrospinal
fluid (vCSF), white matter (WM), brain stem (BS), cortical gray matter (cGM) and ex-
tracerebral cerebrospinal fluid (eCSF). A common artifact in fetal MRI is the intensity
inhomogeneity artifact caused by the fetal movements during the scanning, which
complicates automatic segmentation. Additionally, generating manual segmentation
on slices with artifacts is time consuming and in some scans infeasible. Hence, in this
chapter, we proposed a data augmentation technique that synthesizes slices with in-
tensity inhomogeneity artifacts to improve segmentation robustness. The images with
synthesized artifacts were used during the training. Themethodwas evaluated on fetal
and neonatal MRI scans showing intensity inhomogeneity artifacts. We demonstrate
that segmentation using the proposed data augmentation leads to accurate segmenta-
tion of the brain tissue classes.

Another common artifact in neonatal MRI is caused by the infant’s motion during
scanning, whichmakes brain tissue segmentationmore difficult. CHAPTER 4 introduces
an automatic method for correction of such artifacts in reconstructed brain MR scans
of preterm infants using generative adversarial network (GAN) with cycle consistency.
The method was trained to transform slices affected by motion artifacts into slices
without artifacts, and vice versa. To evaluate whether motion correction results in
more accurate segmentation, the images were segmented into eight tissue classes us-
ing a convolution neural network. The segmentation network was augmented during
training using the cycleGAN that synthesizes slices with artifacts from slices without
artifacts. We demonstrate that the proposed correction for motion artifacts improves
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image quality and allows accurate automatic segmentation of brain tissue classes in
brain MRI of infants. In an ablation study, we also show that the proposed data aug-
mentation improves segmentation results.

CHAPTER 5 analyzes longitudinal brain volume changes in infants with antenatal
congenital heart disease (CHD). Infants with CHD undergo heart surgery within 30
days after birth. They are scanned with MRI in utero and neonatally (both preopera-
tively and postoperatively). To investigate the association between fetal and neonatal
brain volumes, the brain tissue volumes were measured using automatic segmenta-
tion developed in CHAPTER 2 and CHAPTER 3. Furthermore, the correlation between
fetal brain volumes and neonatal brain volumes with ischemic injury was analyzed.
This study reveals that fetal brain volumes positively correlated with neonatal brain
volumes in critical CHD, with a negative correlation between fetal brain volumes and
neonatal ischemic injury. Thus, fetal brain imaging has the potential to provide early
neurological biomarkers.

CHAPTER 6 investigates the effects of early and late intervention for PHVD on ad-
ditional brain injury and ventricular volume using term-equivalent age MRI. In this
study, preterm infants with PHVD were randomized into two groups, early and late
intervention. The Kidokoro Global Brain Abnormality Score and the frontal and occip-
ital horn ratio were measured. Moreover, automatic segmentation using the method
presented in CHAPTER 3 was used for volumetric analysis. The findings demonstrate
more brain injury and larger ventricular volumes in the late intervention group. These
results support the positive effects of early intervention for PHVD.

CHAPTER 7 introduces automatic methods to segment brain tissues in infants with
perinatal stroke. MR scans of infants suspected of having a stroke are acquired af-
ter the acute phase, and three months later as part of the clinical follow-up proce-
dure. In the first scan, brain tissues are visible on T2-weighted MRI and ischemic
stroke tissue is visible on DWI. To develop a method that segments brain tissues and
stroke together, a multi-modal network extracting features from both T2 and DWI
is needed. A network with two encoding branches that simultaneously encode DWI
and T2 was developed to segment the brain into seven tissue classes and an ischemic
stroke class. In the 3-months follow-up scan, ischemic tissue is not visible as it has
been replaced by CSF. Accordingly, a neural network to segment the brain into seven
tissue classes was applied on the T2-weighted MR images. The acute phase and 3-
months networks are both convolutional neural networks with a U-net architecture.
The multi-modal and single-modal networks were evaluated quantitatively in 4 and
6 scans respectively. Furthermore, these networks were evaluated qualitatively using
Likert scale in 48 scans. The method could be used to evaluate the effects of ischemic
tissue treatment such as administration of erythropoietin.
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8.2 Discussion and future directions
This thesis presents automatic methods to segment brain MRI to perform volumetric
measurements that provide the basis for evaluation of brain development in fetuses
and neonates from the last trimester of pregnancy until 40 weeks of gestation. These
automatic methods do not only accelerate the extremely time-consuming manual seg-
mentation task in large-scale studies but may also be implemented in clinical practice
directly to aid identifying infants at higher risk of neurodevelopmental impairment.

The methods proposed in this thesis are mainly based on supervised deep learning
which are prone to overfitting on training data. Evaluating these method on exter-
nal validation set would therefore, able to demonstrate the generalizability of these
methods. In Chapter 1 the developed method was evaluated on diverse data sets in-
cluding infants with various types of pathology and scans acquired in an external
dataset, other chapters used data from a single hospital. A next step toward routine
use of these methods would be validating on data with a wide variation in imaging and
patient characteristics. Future work should, therefore, extend the evaluation to data
from different centers acquired with different scanner types and imaging parameters.

However, the strength of supervised learning is its versatility to new data. In other
words, the segmentation methods presented in this thesis may be adapted to different
datasets by retraining with representative data without changing the method. Chap-
ter 2 demonstrates that the network aimed at segmenting ICV from T2-weighted MRI
is not only able to learn from each set separately but that it is also able to learn from
a combination of fetal and preterm born neonatal scans acquired in axial, coronal,
and sagittal orientations. This method is able to outperform the commonly used tools
without need of developing data-specific method for each dataset. The results showed
that despite the differences in image acquisition, image orientation, and brain mor-
phology, fetal and neonatal scans share common features that improve the ability of
the network to generalize, making it more robust and compensating for the lack of
representative data.

Several segmentation tasks in this thesis are based on U-net architecture. U-net
is a fully convolutional network well-known in medical image analysis for achieving
fast and accurate segmentation [52, 159, 160]. Chapters 3 and 4 describe augmentation
methods using U-net for brain tissue segmentation in neonatal and fetal MRI. Chap-
ter 7 demonstrates a multi-modal variation of U-net to segment brain and ischemic
stroke from T2-weighted MRI and DWI. These chapters demonstrate that the same
architecture with necessary adjustments is able to perform different tasks and obtain
good performance if data augmentation, training parameters and loss functions have
been chosen well.

Even smaller deep learning network such as U-net are prone to overfitting largely
for lack of representative training data. Augmentation is a well-known strategy ad-
dressing this issue by synthesizing data where variation can be introduced in the
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training set. The standard augmentation techniques including random rotation, ran-
dom rigid transformation, and random flipping in vertical direction were applied to
images in this thesis. In addition to these, in Chapters 3 and 4 augmentation meth-
ods are proposed that were customized to scans with artifacts. In Chapter 3 intensity
inhomogeneity artifacts were synthesized using mathematical models and in Chap-
ter 4 motion artifacts were synthesized using the generative model on slices without
artifacts. In this way the segmentation network could generate more accurate seg-
mentations in the presence of artifacts. However, each of these methods is designed
for one type of artifact only. Using a unified generative adversarial network for multi-
domain image-to-image translation would allow to remove multiple types of artifacts
[161]. Combining these artifacts in one network may enable the network perform
more efficiently and an interesting direction for future research.

In Chapter 3 we presented an automatic method for segmentation of fetal MRI
into seven brain tissue classes. Previous methods for segmentation of fetal MRI often
reconstruct the brain from several MRI scans acquired in axial, coronal and sagittal
planes [67, 68, 71]. Acquiring several scans from the fetus is time consuming and
is not available in many cases. We proposed a method which can be applied to 2D
slices of fetal MRI acquired in the coronal plane and can potentially be applied to other
image planes. CombiningMRIs acquired in different planes can enhance segmentation
performance and compensate the information lost due to artifacts. Thus, generating
a multi-task model to segment and reconstruct scans from MRIs acquired in different
planes may improve the performance of both segmentation and image reconstruction
and therefore, would be an interesting direction for future research.

The automatic segmentation methods introduced in Chapters 2, 3, 4, and 7 were
used for clinical research. In Chapter 5, the brain development in infants with crit-
ical heart disease was quantified in a longitudinally scanned cohort. The automatic
segmentation was applied to a large set of fetal MRI, and neonatal preoperative and
postoperativeMRI. In Chapter 6, the effects of early intervention in infants with PHVD
were quantified using automatic measures of brain tissue volume. The method devel-
oped in Chapter 7 can be used to evaluate the effect neurogenerative interventions
such as recombinant human erythropoietin (EPO) on brain development in infants
with perinatal stroke. Brain tissue segmentation quantifies tissue volumes and thus is
a requirement to measure cortical surface area, cortical folding, and cortical thickness
that are commonly used for a quantitative description of the brain and its develop-
ment. Extracting these quantitative features from a large set of (temporal) imaging
data would model brain development in different stages. This thesis provides the foun-
dation for such studies. Without reliable automatic segmentation and quantification
methods, clinical evaluation in a large set of perinatal image data would hardly be
feasible, if at all.

Recent achievements in machine learning and deep learning are expected to revo-
lutionize modern health care in the coming years. Manymethods perform comparably
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to or better than human experts for a specific task. Repetitive tasks such as, but not
limited to, brain tissue segmentation and brain injury detection in MRI scans could
be replaced by fully automatic or semi-automatic approaches. The automatic segmen-
tation techniques proposed in this thesis eventually can be directly implemented in
the clinic and thereby clinicians are able to monitor brain development quantitatively.
This may assist in making a more accurate, more reliable diagnosis and reduce human
errors after long hour works and possibly at lower costs. However, complex medical
tasks still benefit from human expertise. The current medical technology literature
supports the concept of human-in-the-loop that outperforms the effort of human or
machine alone [162]. This encourages using semi-automatic or automatic methods
with human supervision. Recently, many methods were proposed to investigate the
uncertainty of a trained network for a certain task. These techniques allow involving
humans-in-the-loop to annotate correctly the uncertainty of the network. Further-
more, the network can retrain on adjusted labeled data to ’learn from mistakes’. This
would be a successful example of human-machine collaboration which accelerates the
adaptation to the new paradigm.
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In het laatste trimester van de zwangerschap, d.w.z. tussen de 30 en 40 weken zwan-
gerschap, vinden belangrijke neurologische ontwikkelingen plaats. Het volgen van de
hersenontwikkeling in deze periode helpt clinici bij het detecteren, en indien nodig,
behandelen van stoornissen. Magnetic resonance imaging (MRI) wordt steeds vaker
gebruikt om zowel in utero als ex utero de hersenen van baby’s te monitoren, om let-
sels die een langetermijneffect kunnen hebben op de neurocognitieve en motorische
ontwikkeling op te sporen. Echter is men niet altijd in staat de ontwikkeling van de
hersenen voldoende te kwantificeren door scans visueel te beoordelen. Dit maakt de
evaluatie van langetermijneffecten niet eenvoudig. Een veelgebruikte methode om het
hersenvolume te meten is segmentatie, oftewel het splitsen van het beeld in segmenten
om verschillende anatomische structuren aan te geven. Niettemin is het buitengewoon
tijdrovend en subjectief om een groot aantal MRI scans handmatig te segmenteren. Au-
tomatische segmentatie is daarom een essentieel hulpmiddel voor het kwantificeren
van de ontwikkelingen van de hersenen en een vereiste voor andere metingen, zo-
als metingen van de morfologie. Dientengevolge kan automatische segmentatie mee-
helpen om op een betrouwbaardere wijze letsels vast te stellen en nauwkeuriger een
verband te leggen met cognitieve uitkomsten.

HOOFDSTUK 2 beschrijft een methode voor het automatisch meten van het intra-
craniële volume op een foetale of neonatale MRI scan met behulp van een convolu-
tioneel neuraal netwerk. Een netwerk met de architectuur van een U-net is getraind
met een combinatie van foetale scans en scans van prematuur geboren baby’s. Scans
zijn gemaakt met axiale, coronale en sagittale oriëntaties. De methode is geëvalueerd
met scans die gemaakt zijn met verschillende beeldvormingsparameters (veldsterkte,
beeldvormingsvlak, resolutie) en bevatten verschillende ziektebeelden (posthemorrha-
gische ventriculaire dilatatie (PHVD), beroerte, zuurstoftekort, syndroom van Down).
In dit hoofdstuk tonen wij aan dat onze methode het intracraniele volume (ICV) op
een betrouwbare manier kan segmenteren in een diverse set van scans, bestaande uit
foetale MRI scans en scans van pasgeboren baby’s met een pathologie.

HOOFDSTUK 3 beschrijft een methode voor de segmentatie van hersenstructuren in
foetale MRI doormiddel van een convolutioneel neuraal netwerk. Eerst identificeert
de methode het ICV in de scan door gebruik te maken van de methode voorgesteld in
HOOFDSTUK 2. Vervolgens segmenteert een tweede netwerk, wat dezelfde architectuur
heeft, zeven verschillende weefselklassen in de hersenen. Dit zijn het cerebellum (CB),
de basale ganglia en thalami (BGT), ventriculair hersenvocht (vCSF), witte stof (WM),
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de hersenstam (BS), corticale grijze stof (cGM) en extracerebraal hersenvocht (eCSF).
Een veelvoorkomend artefact bij foetale MRI is intensiteits inhomogeniteit, dat wordt
veroorzaakt door beweging van de foetus tijdens het scannen en de automatische seg-
mentatie bemoeilijkt. Daarnaast is het handmatig segmenteren van scan coupes met
artefacten tijdrovend en soms zelfs onmogelijk. Daarom, om de robustheid van de
segmentatietechniek te verbeteren, stellen we in dit hoofdstuk een data augmentatie-
techniek voor die scan coupes met intensiteits inhomogeniteits artefacten syntheti-
seert. We laten zien dat segmentatie met de voorgestelde data augmentatie-techniek
leidt tot in een nauwkeurige segmentatie van de hersenweefselklassen.

Een ander veelvoorkomend artefact bij MRI scans van pasgeboren baby’s wordt
veroorzaakt door beweging van het kind tijdens het scannen, waardoor de segmenta-
tie van hersenweefsel in de scan wordt bemoeilijkt. HOOFDSTUK 4 introduceert een au-
tomatische methode voor het corrigeren van dergelijke artefacten in MRI scans van de
hersenen van premature baby’s, en maakt gebruik van een generative adversarial net-
work met cyclusconsistentie (CycleGAN). De methode is getraind om scan coupes met
bewegingsartefacten te veranderen in scan coupes zonder artefacten, en omgekeerd.
Om te evalueren of deze bewegingscorrectie leidt tot een nauwkeuriger segmentatie re-
sultaat, segmenteren we met een convolutioneel neuraal netwerk acht weefselklassen
in scans. Tijdens het trainen is het segmentatie netwerk geaugmenteerd met behulp
van de CycleGAN die scan coupes met artefacten synthetiseert uit scan coupes zonder
artefacten. In dit hoofdstuk laten we zien dat de voorgestelde correctie voor bewe-
gingsartefacten de beeldkwaliteit verbetert en leidt tot een nauwkeurige segmentatie
van hersenweefselklassen in MRI scans van de hersenen van baby’s. Daarnaast laten
we in een ablatie-studie zien dat de beschreven data augmentatie techniek de segmen-
taties verbetert.

In HOOFDSTUK 5 analyseren we veranderingen in het hersenvolume van baby’s met
prenatale aangeboren hartziekte (CHD) over de tijd. Baby’s met CHD ondergaan bin-
nen 30 dagen na de geboorte een hartoperatie. Ze krijgen een MRI scan als ze nog in
de baarmoeder zijn en na de bevalling (zowel preoperatief als postoperatief). Om de
associatie tussen foetaal en neonataal hersenvolume te onderzoeken, zijn de volumes
van hersenweefsel gemeten met behulp van de automatische segmentatie methode,
beschreven in HOOFDSTUK 2 en HOOFDSTUK 3. Daarnaast is de correlatie geanalyseerd
tussen foetale hersenvolumes en neonatale hersenvolumesmet ischemisch letsel. Deze
studie laat zien dat foetale hersenvolumes positief gecorreleerd zijn met neonatale her-
senvolumes in het geval van kritieke CHD, met een negatieve correlatie tussen foetale
hersenvolumes en neonataal ischemisch letsel. Beeldvorming van de feutale hersenen
laat dus potentieel zien om neurologische biomarkers te verschaffen voor vroegtijdige
diagnose.

In HOOFDSTUK 6 onderzoeken we het effect van vroegtijdige en late interventie
voor PHVD op bijkomend hersen letsel en het ventriculair volume, gebruikmakend
van MRI scans die gemaakt zijn op de geboorte-equivalente leeftijd. In deze studie zijn
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vroeggeboren baby’s met PHVD in twee groepen gerandomiseerd: de vroegtijdige en
de late interventie groep. De Kidokoro Global Brain Abnormality Score is gemeten en
de ratio tussen de frontale en occipitale hoorn is bepaald. Verder is de automatische
segmentatie methode, beschreven in HOOFDSTUK 3, gebruikt voor analyse van het vo-
lume. De bevindingen laten meer hersenletsel en grotere ventriculaire volumes zien
in de late interventie groep. Deze resultaten ondersteunen de positive effecten van
vroegtijdige interventie voor PHVD.

In HOOFDSTUK 7 introduceren we een automatische methode voor het segmente-
ren van hersenstructuren in baby’s met een perinatale beroerte. Als onderdeel van
de klinische follow-up procedure, wordt bij verdenking van perinatale beroerte een
MRI scan gemaakt na de acute fase en drie maanden later. In de eerste MRI scan is
het hersenweefsel zichtbaar op het T2-gewogen beeld en de beroerte op het diffusie
gewogen beeld (DWI). Om een methode te ontwikkelen die de hersenstructuren en de
beroerte tegelijkertijd kan segmenteren, is een multimodaal netwerk nodig dat eigen-
schappen kan extraheren uit zowel het T2- als het DWI-beeld. Hiervoor is een netwerk
ontworpen met twee coderende takken die tegelijkertijd het T2- en het DWI-beeld co-
deren om zo de hersenen in zeven hersenstructuur klassen en een beroerte klasse te
segmenteren. In de follow-up scan is de beroerte niet meer zichtbaar omdat deze ver-
vangen is door CSF. Daarom is het T2-gewogen beeld in zeven hersenstructuurklassen
gesegmenteerd met een neuraal netwerk. Zowel het acute-fase-netwerk als het follow-
up-netwerk zijn convolutionele neurale netwerken met de architectuur van een U-net.
Het multi-modale netwerk en het single-modale netwerk zijn doormiddel van 4 en 6
scans kwantitafief geëvalueerd. Daarnaast zijn de netwerken met behulp van 48 scans
geëvalueerd door gebruik te maken van de Likert schaal. De resultaten laten zien dat
deze methode gebruikt zou kunnen worden om de effecten van behandeling van ische-
mische weefsel, zoals het toedienen van erytropoëtine, te evalueren.
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